
	

https://dogewogalorif.bebopim.com/764650222770020025368765694286357662080070?xanezuzelujupupejabuwixemuletiguridepigikobakujasuvetafujuvumi=lisodenovanatafokalesenisexinaniwunajiliwazopijikarelesaxatoxidumavikuxozuxokupenetixevogaxavefitafemutadukibarekajapunekegulolusilakakepadonukenigojabewimomezogikuvumoludizipemizimimegarakudifuwibogizidopazagi&utm_term=vitest+config+exclude+test&nesebibidotakativafuwajiwefowibabovubuzaridezuragomudesifamo=vetodavofetoxezupinewolifigivoxedabumezotiwikapapizomalewepoxezovuwuvexixirumefajaturejamipapajumatubamamejivepudajiserosisuxekufejapuvajavijij

Vitest	config	exclude	test

Hello	there,	I	am	trying	to	exclude	the	release.config.cjs	and	files	like	index.js	which	are	sitting	in	my	root	folder	of	the	project.	I	tried	few	different	ways	to	add	the	entries,	for	example:	export	default	defineConfig({	test:	{	exclude:[...configDefaults.exclude,	'**/release.config.cjs',	//or	'release.config.cjs'	doesn't	matter	'index.js'	//	or	even	**/index.*],
coverage:	{	reporter:	['text',	'json',	'html'],	},	},	})	Reproduction	in	terminal	run	npm	run	coverage	both	the	release.config.js	and	src/basic.ts	are	counted	in	the	coverage	System	Info	System:	OS:	macOS	14.5	CPU:	(10)	arm64	Apple	M1	Max	Memory:	97.78	MB	/	32.00	GB	Shell:	5.9	-	/bin/zsh	Binaries:	Node:	20.15.1	-
~/.volta/tools/image/node/20.15.1/bin/node	Yarn:	1.22.19	-	~/.volta/tools/image/yarn/1.22.19/bin/yarn	npm:	10.7.0	-	~/.volta/tools/image/node/20.15.1/bin/npm	pnpm:	9.7.0	-	~/Library/pnpm/pnpm	Browsers:	Chrome:	127.0.6533.100	Safari:	17.5	npmPackages:	@vitest/coverage-v8:	^2.0.5	=>	2.0.5	vitest:	^2.0.5	=>	2.0.5	Used	Package	Manager	pnpm
Validations	If	you	are	using	Vite	and	have	a	vite.config	file,	Vitest	will	read	it	to	match	with	the	plugins	and	setup	as	your	Vite	app.	If	you	want	to	have	a	different	configuration	for	testing	or	your	main	app	doesn't	rely	on	Vite	specifically,	you	could	either:Create	vitest.config.ts,	which	will	have	the	higher	priority	and	will	override	the	configuration	from
vite.config.ts	(Vitest	supports	all	conventional	JS	and	TS	extensions,	but	doesn't	support	json)	-	it	means	all	options	in	your	vite.config	will	be	ignoredPass	--config	option	to	CLI,	e.g.	vitest	--config	./path/to/vitest.config.tsUse	process.env.VITEST	or	mode	property	on	defineConfig	(will	be	set	to	test/benchmark	if	not	overridden	with	--mode)	to
conditionally	apply	different	configuration	in	vite.config.tsTo	configure	vitest	itself,	add	test	property	in	your	Vite	config.	You'll	also	need	to	add	a	reference	to	Vitest	types	using	a	triple	slash	command	at	the	top	of	your	config	file,	if	you	are	importing	defineConfig	from	vite	itself.Open	Config	ExamplesUsing	defineConfig	from	vite	you	should	follow
this:ts///	import	{	defineConfig	}	from	'vite'	export	default	defineConfig({	test:	{	//	...	Specify	options	here.	},	})The	will	stop	working	in	Vitest	4,	but	you	can	already	start	migrating	to	vitest/config:ts///	import	{	defineConfig	}	from	'vite'	export	default	defineConfig({	test:	{	//	...	Specify	options	here.	},	})Using	defineConfig	from	vitest/config	you
should	follow	this:tsimport	{	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	test:	{	//	...	Specify	options	here.	},	})You	can	retrieve	Vitest's	default	options	to	expand	them	if	needed:tsimport	{	configDefaults,	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	test:	{	exclude:	[...configDefaults.exclude,
'packages/template/*'],	},	})When	using	a	separate	vitest.config.js,	you	can	also	extend	Vite's	options	from	another	config	file	if	needed:tsimport	{	defineConfig,	mergeConfig	}	from	'vitest/config'	import	viteConfig	from	'./vite.config'	export	default	mergeConfig(viteConfig,	defineConfig({	test:	{	exclude:	['packages/template/*'],	},	}))If	your	Vite	config
is	defined	as	a	function,	you	can	define	the	config	like	this:tsimport	{	defineConfig,	mergeConfig	}	from	'vitest/config'	import	viteConfig	from	'./vite.config'	export	default	defineConfig(configEnv	=>	mergeConfig(viteConfig(configEnv),	defineConfig({	test:	{	exclude:	['packages/template/*'],	},	})))WARNINGAll	listed	options	on	this	page	are	located
within	a	test	property	inside	the	configuration:tsexport	default	defineConfig({	test:	{	exclude:	[],	},	})Since	Vitest	uses	Vite	config,	you	can	also	use	any	configuration	option	from	Vite.	For	example,	define	to	define	global	variables,	or	resolve.alias	to	define	aliases	-	these	options	should	be	defined	on	the	top	level,	not	within	a	test
property.Configuration	options	that	are	not	supported	inside	a	workspace	project	config	have	*	sign	next	to	them.	This	means	they	can	only	be	set	in	the	root	Vitest	config.include	Type:	string[]Default:	['**/*.{test,spec}.?(c|m)[jt]s?(x)']CLI:	vitest	[...include],	vitest	**/*.test.jsA	list	of	glob	patterns	that	match	your	test	files.NOTEWhen	using	coverage,
Vitest	automatically	adds	test	files	include	patterns	to	coverage's	default	exclude	patterns.	See	coverage.exclude.exclude	Type:	string[]Default:	['**/node_modules/**',	'**/dist/**',	'**/cypress/**',	'**/.{idea,git,cache,output,temp}/**',	'**/{karma,rollup,webpack,vite,vitest,jest,ava,babel,nyc,cypress,tsup,build,eslint,prettier}.config.*']CLI:	vitest	--exclude
"**/excluded-file"A	list	of	glob	patterns	that	should	be	excluded	from	your	test	files.WARNINGThis	option	does	not	affect	coverage.	If	you	need	to	remove	certain	files	from	the	coverage	report,	use	coverage.exclude.This	is	the	only	option	that	doesn't	override	your	configuration	if	you	provide	it	with	a	CLI	flag.	All	glob	patterns	added	via	--exclude	flag
will	be	added	to	the	config's	exclude.includeSource	Type:	string[]Default:	[]Include	globs	for	in-source	test	files.When	defined,	Vitest	will	run	all	matched	files	with	import.meta.vitest	inside.name	Assign	a	custom	name	to	the	test	project	or	Vitest	process.	The	name	will	be	visible	in	the	CLI	and	available	in	the	Node.js	API	via	project.name.server	Type:
{	sourcemap?,	deps?,	...	}Vite-Node	server	options.server.sourcemap	Type:	'inline'	|	booleanDefault:	'inline'Inject	inline	source	map	to	modules.server.debug	Type:	{	dumpModules?,	loadDumppedModules?	}Vite-Node	debugger	options.server.debug.dumpModules	Dump	the	transformed	module	to	filesystem.	Passing	a	string	will	dump	to	the	specified
path.server.debug.loadDumppedModules	Read	dumped	module	from	filesystem	whenever	exists.	Useful	for	debugging	by	modifying	the	dump	result	from	the	filesystem.server.deps	Type:	{	external?,	inline?,	...	}Handling	for	dependencies	resolution.server.deps.external	Type:	(string	|	RegExp)[]Default:	[/\/node_modules\//]Externalize	means	that	Vite
will	bypass	the	package	to	the	native	Node.	Externalized	dependencies	will	not	be	applied	to	Vite's	transformers	and	resolvers,	so	they	do	not	support	HMR	on	reload.	By	default,	all	packages	inside	node_modules	are	externalized.These	options	support	package	names	as	they	are	written	in	node_modules	or	specified	inside	deps.moduleDirectories.
For	example,	package	@company/some-name	located	inside	packages/some-name	should	be	specified	as	some-name,	and	packages	should	be	included	in	deps.moduleDirectories.	Basically,	Vitest	always	checks	the	file	path,	not	the	actual	package	name.If	regexp	is	used,	Vitest	calls	it	on	the	file	path,	not	the	package	name.server.deps.inline	Type:
(string	|	RegExp)[]	|	trueDefault:	[]Vite	will	process	inlined	modules.	This	could	be	helpful	to	handle	packages	that	ship	.js	in	ESM	format	(that	Node	can't	handle).If	true,	every	dependency	will	be	inlined.	All	dependencies,	specified	in	ssr.noExternal	will	be	inlined	by	default.server.deps.fallbackCJS	Type	booleanDefault:	falseWhen	a	dependency	is	a
valid	ESM	package,	try	to	guess	the	cjs	version	based	on	the	path.	This	might	be	helpful,	if	a	dependency	has	the	wrong	ESM	file.This	might	potentially	cause	some	misalignment	if	a	package	has	different	logic	in	ESM	and	CJS	mode.server.deps.cacheDir	Type	stringDefault:	'node_modules/.vite'Directory	to	save	cache	files.deps	Type:	{	optimizer?,	...
}Handling	for	dependencies	resolution.deps.optimizer	Type:	{	ssr?,	web?	}See	also:	Dep	Optimization	OptionsEnable	dependency	optimization.	If	you	have	a	lot	of	tests,	this	might	improve	their	performance.When	Vitest	encounters	the	external	library	listed	in	include,	it	will	be	bundled	into	a	single	file	using	esbuild	and	imported	as	a	whole	module.
This	is	good	for	several	reasons:Importing	packages	with	a	lot	of	imports	is	expensive.	By	bundling	them	into	one	file	we	can	save	a	lot	of	timeImporting	UI	libraries	is	expensive	because	they	are	not	meant	to	run	inside	Node.jsYour	alias	configuration	is	now	respected	inside	bundled	packagesCode	in	your	tests	is	running	closer	to	how	it's	running	in
the	browserBe	aware	that	only	packages	in	deps.optimizer?.[mode].include	option	are	bundled	(some	plugins	populate	this	automatically,	like	Svelte).	You	can	read	more	about	available	options	in	Vite	docs	(Vitest	doesn't	support	disable	and	noDiscovery	options).	By	default,	Vitest	uses	optimizer.web	for	jsdom	and	happy-dom	environments,	and
optimizer.ssr	for	node	and	edge	environments,	but	it	is	configurable	by	transformMode.This	options	also	inherits	your	optimizeDeps	configuration	(for	web	Vitest	will	extend	optimizeDeps,	for	ssr	-	ssr.optimizeDeps).	If	you	redefine	include/exclude	option	in	deps.optimizer	it	will	extend	your	optimizeDeps	when	running	tests.	Vitest	automatically
removes	the	same	options	from	include,	if	they	are	listed	in	exclude.TIPYou	will	not	be	able	to	edit	your	node_modules	code	for	debugging,	since	the	code	is	actually	located	in	your	cacheDir	or	test.cache.dir	directory.	If	you	want	to	debug	with	console.log	statements,	edit	it	directly	or	force	rebundling	with	deps.optimizer?.[mode].force
option.deps.optimizer.{mode}.enabled	Type:	booleanDefault:	falseEnable	dependency	optimization.deps.web	Type:	{	transformAssets?,	...	}Options	that	are	applied	to	external	files	when	transform	mode	is	set	to	web.	By	default,	jsdom	and	happy-dom	use	web	mode,	while	node	and	edge	environments	use	ssr	transform	mode,	so	these	options	will
have	no	affect	on	files	inside	those	environments.Usually,	files	inside	node_modules	are	externalized,	but	these	options	also	affect	files	in	server.deps.external.deps.web.transformAssets	Type:	booleanDefault:	trueShould	Vitest	process	assets	(.png,	.svg,	.jpg,	etc)	files	and	resolve	them	like	Vite	does	in	the	browser.This	module	will	have	a	default
export	equal	to	the	path	to	the	asset,	if	no	query	is	specified.deps.web.transformCss	Type:	booleanDefault:	trueShould	Vitest	process	CSS	(.css,	.scss,	.sass,	etc)	files	and	resolve	them	like	Vite	does	in	the	browser.If	CSS	files	are	disabled	with	css	options,	this	option	will	just	silence	ERR_UNKNOWN_FILE_EXTENSION
errors.deps.web.transformGlobPattern	Type:	RegExp	|	RegExp[]Default:	[]Regexp	pattern	to	match	external	files	that	should	be	transformed.By	default,	files	inside	node_modules	are	externalized	and	not	transformed,	unless	it's	CSS	or	an	asset,	and	corresponding	option	is	not	disabled.deps.interopDefault	Type:	booleanDefault:	trueInterpret	CJS
module's	default	as	named	exports.	Some	dependencies	only	bundle	CJS	modules	and	don't	use	named	exports	that	Node.js	can	statically	analyze	when	a	package	is	imported	using	import	syntax	instead	of	require.	When	importing	such	dependencies	in	Node	environment	using	named	exports,	you	will	see	this	error:import	{	read	}	from	'fs-jetpack';
^^^^	SyntaxError:	Named	export	'read'	not	found.	The	requested	module	'fs-jetpack'	is	a	CommonJS	module,	which	may	not	support	all	module.exports	as	named	exports.	CommonJS	modules	can	always	be	imported	via	the	default	export.Vitest	doesn't	do	static	analysis,	and	cannot	fail	before	your	running	code,	so	you	will	most	likely	see	this	error
when	running	tests,	if	this	feature	is	disabled:TypeError:	createAsyncThunk	is	not	a	function	TypeError:	default	is	not	a	functionBy	default,	Vitest	assumes	you	are	using	a	bundler	to	bypass	this	and	will	not	fail,	but	you	can	disable	this	behaviour	manually,	if	you	code	is	not	processed.deps.moduleDirectories	Type:	string[]Default:	['node_modules']A
list	of	directories	that	should	be	treated	as	module	directories.	This	config	option	affects	the	behavior	of	vi.mock:	when	no	factory	is	provided	and	the	path	of	what	you	are	mocking	matches	one	of	the	moduleDirectories	values,	Vitest	will	try	to	resolve	the	mock	by	looking	for	a	__mocks__	folder	in	the	root	of	the	project.This	option	will	also	affect	if	a
file	should	be	treated	as	a	module	when	externalizing	dependencies.	By	default,	Vitest	imports	external	modules	with	native	Node.js	bypassing	Vite	transformation	step.Setting	this	option	will	override	the	default,	if	you	wish	to	still	search	node_modules	for	packages	include	it	along	with	any	other	options:tsimport	{	defineConfig	}	from	'vitest/config'
export	default	defineConfig({	test:	{	deps:	{	moduleDirectories:	['node_modules',	path.resolve('../../packages')],	}	},	})runner	Type:	VitestRunnerConstructorDefault:	node,	when	running	tests,	or	benchmark,	when	running	benchmarksPath	to	a	custom	test	runner.	This	is	an	advanced	feature	and	should	be	used	with	custom	library	runners.	You	can
read	more	about	it	in	the	documentation.benchmark	Type:	{	include?,	exclude?,	...	}Options	used	when	running	vitest	bench.benchmark.include	Type:	string[]Default:	['**/*.{bench,benchmark}.?(c|m)[jt]s?(x)']Include	globs	for	benchmark	test	filesbenchmark.exclude	Type:	string[]Default:	['node_modules',	'dist',	'.idea',	'.git',	'.cache']Exclude	globs	for
benchmark	test	filesbenchmark.includeSource	Type:	string[]Default:	[]Include	globs	for	in-source	benchmark	test	files.	This	option	is	similar	to	includeSource.When	defined,	Vitest	will	run	all	matched	files	with	import.meta.vitest	inside.benchmark.reporters	Type:	ArrayableDefault:	'default'Custom	reporter	for	output.	Can	contain	one	or	more	built-in
report	names,	reporter	instances,	and/or	paths	to	custom	reporters.benchmark.outputFile	Deprecated	in	favor	of	benchmark.outputJson.benchmark.outputJson	Type:	string	|	undefinedDefault:	undefinedA	file	path	to	store	the	benchmark	result,	which	can	be	used	for	--compare	option	later.For	example:sh#	save	main	branch's	result	git	checkout	main
vitest	bench	--outputJson	main.json	#	change	a	branch	and	compare	against	main	git	checkout	feature	vitest	bench	--compare	main.jsonbenchmark.compare	Type:	string	|	undefinedDefault:	undefinedA	file	path	to	a	previous	benchmark	result	to	compare	against	current	runs.alias	Type:	Record	|	ArrayDefine	custom	aliases	when	running	inside	tests.
They	will	be	merged	with	aliases	from	resolve.alias.WARNINGVitest	uses	Vite	SSR	primitives	to	run	tests	which	has	certain	pitfalls.Aliases	affect	only	modules	imported	directly	with	an	import	keyword	by	an	inlined	module	(all	source	code	is	inlined	by	default).Vitest	does	not	support	aliasing	require	calls.If	you	are	aliasing	an	external	dependency
(e.g.,	react	->	preact),	you	may	want	to	alias	the	actual	node_modules	packages	instead	to	make	it	work	for	externalized	dependencies.	Both	Yarn	and	pnpm	support	aliasing	via	the	npm:	prefix.globals	Type:	booleanDefault:	falseCLI:	--globals,	--globals=falseBy	default,	vitest	does	not	provide	global	APIs	for	explicitness.	If	you	prefer	to	use	the	APIs
globally	like	Jest,	you	can	pass	the	--globals	option	to	CLI	or	add	globals:	true	in	the	config.tsimport	{	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	test:	{	globals:	true,	},	})To	get	TypeScript	working	with	the	global	APIs,	add	vitest/globals	to	the	types	field	in	your	tsconfig.jsonjson{	"compilerOptions":	{	"types":	["vitest/globals"]	}
}If	you	are	already	using	unplugin-auto-import	in	your	project,	you	can	also	use	it	directly	for	auto	importing	those	APIs.tsimport	{	defineConfig	}	from	'vitest/config'	import	AutoImport	from	'unplugin-auto-import/vite'	export	default	defineConfig({	plugins:	[AutoImport({	imports:	['vitest'],	dts:	true,	//	generate	TypeScript	declaration	}),],
})environment	Type:	'node'	|	'jsdom'	|	'happy-dom'	|	'edge-runtime'	|	stringDefault:	'node'CLI:	--environment=The	environment	that	will	be	used	for	testing.	The	default	environment	in	Vitest	is	a	Node.js	environment.	If	you	are	building	a	web	application,	you	can	use	browser-like	environment	through	either	jsdom	or	happy-dom	instead.	If	you	are
building	edge	functions,	you	can	use	edge-runtime	environmentTIPYou	can	also	use	Browser	Mode	to	run	integration	or	unit	tests	in	the	browser	without	mocking	the	environment.By	adding	a	@vitest-environment	docblock	or	comment	at	the	top	of	the	file,	you	can	specify	another	environment	to	be	used	for	all	tests	in	that	file:Docblock	style:js/**	*
@vitest-environment	jsdom	*/	test('use	jsdom	in	this	test	file',	()	=>	{	const	element	=	document.createElement('div')	expect(element).not.toBeNull()	})Comment	style:js//	@vitest-environment	happy-dom	test('use	happy-dom	in	this	test	file',	()	=>	{	const	element	=	document.createElement('div')	expect(element).not.toBeNull()	})For	compatibility
with	Jest,	there	is	also	a	@jest-environment:js/**	*	@jest-environment	jsdom	*/	test('use	jsdom	in	this	test	file',	()	=>	{	const	element	=	document.createElement('div')	expect(element).not.toBeNull()	})If	you	are	running	Vitest	with	--isolate=false	flag,	your	tests	will	be	run	in	this	order:	node,	jsdom,	happy-dom,	edge-runtime,	custom	environments.
Meaning,	that	every	test	with	the	same	environment	is	grouped,	but	is	still	running	sequentially.Starting	from	0.23.0,	you	can	also	define	custom	environment.	When	non-builtin	environment	is	used,	Vitest	will	try	to	load	package	vitest-environment-${name}.	That	package	should	export	an	object	with	the	shape	of	Environment:tsimport	type	{
Environment	}	from	'vitest'	export	default	{	name:	'custom',	transformMode:	'ssr',	setup()	{	//	custom	setup	return	{	teardown()	{	//	called	after	all	tests	with	this	env	have	been	run	}	}	}	}Vitest	also	exposes	builtinEnvironments	through	vitest/environments	entry,	in	case	you	just	want	to	extend	it.	You	can	read	more	about	extending	environments	in
our	guide.TIPjsdom	environment	exposes	jsdom	global	variable	equal	to	the	current	JSDOM	instance.	If	you	want	TypeScript	to	recognize	it,	you	can	add	vitest/jsdom	to	your	tsconfig.json	when	you	use	this	environment:json{	"compilerOptions":	{	"types":	["vitest/jsdom"]	}	}environmentOptions	Type:	RecordDefault:	{}These	options	are	passed	down
to	setup	method	of	current	environment.	By	default,	you	can	configure	only	JSDOM	options,	if	you	are	using	it	as	your	test	environment.environmentMatchGlobs	Type:	[string,	EnvironmentName][]Default:	[]DEPRECATEDThis	API	was	deprecated	in	Vitest	3.	Use	workspace	to	define	different	configurations	instead.tsexport	default	defineConfig({	test:
{	environmentMatchGlobs:	[['./*.jsdom.test.ts',	'jsdom'],],	workspace:	[{	extends:	true,	test:	{	environment:	'jsdom',	},	},],	},	})Automatically	assign	environment	based	on	globs.	The	first	match	will	be	used.For	example:tsimport	{	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	test:	{	environmentMatchGlobs:	[//	all	tests	in
tests/dom	will	run	in	jsdom	['tests/dom/**',	'jsdom'],	//	all	tests	in	tests/	with	.edge.test.ts	will	run	in	edge-runtime	['**\/*.edge.test.ts',	'edge-runtime'],	//	...]	}	})poolMatchGlobs	Type:	[string,	'threads'	|	'forks'	|	'vmThreads'	|	'vmForks'	|	'typescript'][]Default:	[]DEPRECATEDThis	API	was	deprecated	in	Vitest	3.	Use	workspace	to	define	different
configurations	instead:tsexport	default	defineConfig({	test:	{	poolMatchGlobs:	[['./*.threads.test.ts',	'threads'],],	workspace:	[{	test:	{	extends:	true,	pool:	'threads',	},	},],	},	})Automatically	assign	pool	in	which	tests	will	run	based	on	globs.	The	first	match	will	be	used.For	example:tsimport	{	defineConfig	}	from	'vitest/config'	export	default
defineConfig({	test:	{	poolMatchGlobs:	[//	all	tests	in	"worker-specific"	directory	will	run	inside	a	worker	as	if	you	enabled	`--pool=threads`	for	them,	['**/tests/worker-specific/**',	'threads'],	//	run	all	tests	in	"browser"	directory	in	an	actual	browser	['**/tests/browser/**',	'browser'],	//	all	other	tests	will	run	based	on	"browser.enabled"	and	"threads"
options,	if	you	didn't	specify	other	globs	//	...]	}	})Type:	booleanDefault:	falseCLI:	-u,	--update,	--update=falseUpdate	snapshot	files.	This	will	update	all	changed	snapshots	and	delete	obsolete	ones.watch	*	Type:	booleanDefault:	!process.env.CI	&&	process.stdin.isTTYCLI:	-w,	--watch,	--watch=falseEnable	watch	modeIn	interactive	environments,	this
is	the	default,	unless	--run	is	specified	explicitly.In	CI,	or	when	run	from	a	non-interactive	shell,	"watch"	mode	is	not	the	default,	but	can	be	enabled	explicitly	with	this	flag.root	Type:	stringCLI:	-r	,	--root=Project	rootdir	Type:	stringCLI:	--dir=Default:	same	as	rootBase	directory	to	scan	for	the	test	files.	You	can	specify	this	option	to	speed	up	test
discovery	if	your	root	covers	the	whole	projectreporters	*	Type:	Reporter	|	Reporter[]Default:	'default'CLI:	--reporter=,	--reporter=	--reporter=Custom	reporters	for	output.	Reporters	can	be	a	Reporter	instance,	a	string	to	select	built-in	reporters,	or	a	path	to	a	custom	implementation	(e.g.	'./path/to/reporter.ts',	'@scope/reporter').outputFile	*	Type:
string	|	RecordCLI:	--outputFile=,	--outputFile.json=./pathWrite	test	results	to	a	file	when	the	--reporter=json,	--reporter=html	or	--reporter=junit	option	is	also	specified.	By	providing	an	object	instead	of	a	string	you	can	define	individual	outputs	when	using	multiple	reporters.pool	*	Type:	'threads'	|	'forks'	|	'vmThreads'	|	'vmForks'Default:	'forks'CLI:	-
-pool=threadsPool	used	to	run	tests	in.threads	*	Enable	multi-threading	using	tinypool	(a	lightweight	fork	of	Piscina).	When	using	threads	you	are	unable	to	use	process	related	APIs	such	as	process.chdir().	Some	libraries	written	in	native	languages,	such	as	Prisma,	bcrypt	and	canvas,	have	problems	when	running	in	multiple	threads	and	run	into
segfaults.	In	these	cases	it	is	advised	to	use	forks	pool	instead.forks	*	Similar	as	threads	pool	but	uses	child_process	instead	of	worker_threads	via	tinypool.	Communication	between	tests	and	main	process	is	not	as	fast	as	with	threads	pool.	Process	related	APIs	such	as	process.chdir()	are	available	in	forks	pool.vmThreads	*	Run	tests	using	VM	context
(inside	a	sandboxed	environment)	in	a	threads	pool.This	makes	tests	run	faster,	but	the	VM	module	is	unstable	when	running	ESM	code.	Your	tests	will	leak	memory	-	to	battle	that,	consider	manually	editing	poolOptions.vmThreads.memoryLimit	value.WARNINGRunning	code	in	a	sandbox	has	some	advantages	(faster	tests),	but	also	comes	with	a
number	of	disadvantages.The	globals	within	native	modules,	such	as	(fs,	path,	etc),	differ	from	the	globals	present	in	your	test	environment.	As	a	result,	any	error	thrown	by	these	native	modules	will	reference	a	different	Error	constructor	compared	to	the	one	used	in	your	code:tstry	{	fs.writeFileSync('/doesnt	exist')	}	catch	(err)	{	console.log(err
instanceof	Error)	//	false	}Importing	ES	modules	caches	them	indefinitely	which	introduces	memory	leaks	if	you	have	a	lot	of	contexts	(test	files).	There	is	no	API	in	Node.js	that	clears	that	cache.Accessing	globals	takes	longer	in	a	sandbox	environment.Please,	be	aware	of	these	issues	when	using	this	option.	Vitest	team	cannot	fix	any	of	the	issues	on
our	side.vmForks	*	Similar	as	vmThreads	pool	but	uses	child_process	instead	of	worker_threads	via	tinypool.	Communication	between	tests	and	the	main	process	is	not	as	fast	as	with	vmThreads	pool.	Process	related	APIs	such	as	process.chdir()	are	available	in	vmForks	pool.	Please	be	aware	that	this	pool	has	the	same	pitfalls	listed	in
vmThreads.poolOptions	*	Type:	RecordDefault:	{}poolOptions.threads	Options	for	threads	pool.tsimport	{	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	test:	{	poolOptions:	{	threads:	{	//	Threads	related	options	here	}	}	}	})poolOptions.threads.maxThreads	*	Type:	number	|	stringDefault:	available	CPUsMaximum	number	or
percentage	of	threads.	You	can	also	use	VITEST_MAX_THREADS	environment	variable.poolOptions.threads.minThreads	*	Type:	number	|	stringDefault:	available	CPUsMinimum	number	or	percentage	of	threads.	You	can	also	use	VITEST_MIN_THREADS	environment	variable.poolOptions.threads.singleThread	Type:	booleanDefault:	falseRun	all	tests
with	the	same	environment	inside	a	single	worker	thread.	This	will	disable	built-in	module	isolation	(your	source	code	or	inlined	code	will	still	be	reevaluated	for	each	test),	but	can	improve	test	performance.WARNINGEven	though	this	option	will	force	tests	to	run	one	after	another,	this	option	is	different	from	Jest's	--runInBand.	Vitest	uses	workers
not	only	for	running	tests	in	parallel,	but	also	to	provide	isolation.	By	disabling	this	option,	your	tests	will	run	sequentially,	but	in	the	same	global	context,	so	you	must	provide	isolation	yourself.This	might	cause	all	sorts	of	issues,	if	you	are	relying	on	global	state	(frontend	frameworks	usually	do)	or	your	code	relies	on	environment	to	be	defined
separately	for	each	test.	But	can	be	a	speed	boost	for	your	tests	(up	to	3	times	faster),	that	don't	necessarily	rely	on	global	state	or	can	easily	bypass	that.poolOptions.threads.useAtomics	*	Type:	booleanDefault:	falseUse	Atomics	to	synchronize	threads.This	can	improve	performance	in	some	cases,	but	might	cause	segfault	in	older	Node
versions.poolOptions.threads.isolate	Type:	booleanDefault:	trueIsolate	environment	for	each	test	file.poolOptions.threads.execArgv	*	Type:	string[]Default:	[]Pass	additional	arguments	to	node	in	the	threads.	See	Command-line	API	|	Node.js	for	more	information.poolOptions.forks	Options	for	forks	pool.tsimport	{	defineConfig	}	from	'vitest/config'
export	default	defineConfig({	test:	{	poolOptions:	{	forks:	{	//	Forks	related	options	here	}	}	}	})poolOptions.forks.maxForks	*	Type:	number	|	stringDefault:	available	CPUsMaximum	number	or	percentage	of	forks.	You	can	also	use	VITEST_MAX_FORKS	environment	variable.Type:	number	|	stringDefault:	available	CPUsMinimum	number	or
percentage	of	forks.	You	can	also	use	VITEST_MIN_FORKS	environment	variable.poolOptions.forks.isolate	Type:	booleanDefault:	trueIsolate	environment	for	each	test	file.poolOptions.forks.singleFork	Type:	booleanDefault:	falseRun	all	tests	with	the	same	environment	inside	a	single	child	process.	This	will	disable	built-in	module	isolation	(your
source	code	or	inlined	code	will	still	be	reevaluated	for	each	test),	but	can	improve	test	performance.WARNINGEven	though	this	option	will	force	tests	to	run	one	after	another,	this	option	is	different	from	Jest's	--runInBand.	Vitest	uses	child	processes	not	only	for	running	tests	in	parallel,	but	also	to	provide	isolation.	By	disabling	this	option,	your
tests	will	run	sequentially,	but	in	the	same	global	context,	so	you	must	provide	isolation	yourself.This	might	cause	all	sorts	of	issues,	if	you	are	relying	on	global	state	(frontend	frameworks	usually	do)	or	your	code	relies	on	environment	to	be	defined	separately	for	each	test.	But	can	be	a	speed	boost	for	your	tests	(up	to	3	times	faster),	that	don't
necessarily	rely	on	global	state	or	can	easily	bypass	that.poolOptions.forks.execArgv	*	Type:	string[]Default:	[]Pass	additional	arguments	to	node	process	in	the	child	processes.	See	Command-line	API	|	Node.js	for	more	information.poolOptions.vmThreads	Options	for	vmThreads	pool.tsimport	{	defineConfig	}	from	'vitest/config'	export	default
defineConfig({	test:	{	poolOptions:	{	vmThreads:	{	//	VM	threads	related	options	here	}	}	}	})poolOptions.vmThreads.maxThreads	*	Type:	number	|	stringDefault:	available	CPUsMaximum	number	or	percentage	of	threads.	You	can	also	use	VITEST_MAX_THREADS	environment	variable.poolOptions.vmThreads.minThreads	*	Type:	number	|
stringDefault:	available	CPUsMinimum	number	or	percentage	of	threads.	You	can	also	use	VITEST_MIN_THREADS	environment	variable.poolOptions.vmThreads.memoryLimit	*	Type:	string	|	numberDefault:	1	/	CPU	CoresSpecifies	the	memory	limit	for	workers	before	they	are	recycled.	This	value	heavily	depends	on	your	environment,	so	it's	better	to
specify	it	manually	instead	of	relying	on	the	default.TIPThe	implementation	is	based	on	Jest's	workerIdleMemoryLimit.The	limit	can	be	specified	in	a	number	of	different	ways	and	whatever	the	result	is	Math.floor	is	used	to	turn	it	into	an	integer	value:	1	-	Assumed	to	be	a	fixed	byte	value.	Because	of	the	previous	rule	if	you	wanted	a	value	of	1	byte	(I
don't	know	why)	you	could	use	1.1.With	units	50%	-	As	above,	a	percentage	of	total	system	memory100KB,	65MB,	etc	-	With	units	to	denote	a	fixed	memory	limit.	K	/	KB	-	Kilobytes	(x1000)KiB	-	Kibibytes	(x1024)M	/	MB	-	MegabytesMiB	-	MebibytesG	/	GB	-	GigabytesGiB	-	GibibytespoolOptions.vmThreads.useAtomics	*	Type:	booleanDefault:	falseUse
Atomics	to	synchronize	threads.This	can	improve	performance	in	some	cases,	but	might	cause	segfault	in	older	Node	versions.poolOptions.vmThreads.execArgv	*	Type:	string[]Default:	[]Pass	additional	arguments	to	node	process	in	the	VM	context.	See	Command-line	API	|	Node.js	for	more	information.poolOptions.vmForks	*	Options	for	vmForks
pool.tsimport	{	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	test:	{	poolOptions:	{	vmForks:	{	//	VM	forks	related	options	here	}	}	}	})poolOptions.vmForks.maxForks	*	Type:	number	|	stringDefault:	available	CPUsMaximum	number	or	percentage	of	forks.	You	can	also	use	VITEST_MAX_FORKS	environment	variable.Type:	number	|
stringDefault:	available	CPUsMinimum	number	or	percentage	of	forks.	You	can	also	use	VITEST_MIN_FORKS	environment	variable.poolOptions.vmForks.memoryLimit	*	Type:	string	|	numberDefault:	1	/	CPU	CoresSpecifies	the	memory	limit	for	workers	before	they	are	recycled.	This	value	heavily	depends	on	your	environment,	so	it's	better	to	specify
it	manually	instead	of	relying	on	the	default.	How	the	value	is	calculated	is	described	in	poolOptions.vmThreads.memoryLimitpoolOptions.vmForks.execArgv	*	Type:	string[]Default:	[]Pass	additional	arguments	to	node	process	in	the	VM	context.	See	Command-line	API	|	Node.js	for	more	information.fileParallelism	*	Type:	booleanDefault:	trueCLI:	--no-
file-parallelism,	--fileParallelism=falseShould	all	test	files	run	in	parallel.	Setting	this	to	false	will	override	maxWorkers	and	minWorkers	options	to	1.TIPThis	option	doesn't	affect	tests	running	in	the	same	file.	If	you	want	to	run	those	in	parallel,	use	concurrent	option	on	describe	or	via	a	config.maxWorkers	*	Maximum	number	or	percentage	of
workers	to	run	tests	in.	poolOptions.{threads,vmThreads}.maxThreads/poolOptions.forks.maxForks	has	higher	priority.minWorkers	*	Minimum	number	or	percentage	of	workers	to	run	tests	in.	poolOptions.{threads,vmThreads}.minThreads/poolOptions.forks.minForks	has	higher	priority.testTimeout	Type:	numberDefault:	5_000	in	Node.js,	15_000	if
browser.enabled	is	trueCLI:	--test-timeout=5000,	--testTimeout=5000Default	timeout	of	a	test	in	milliseconds.	Use	0	to	disable	timeout	completely.hookTimeout	Type:	numberDefault:	10_000	in	Node.js,	30_000	if	browser.enabled	is	trueCLI:	--hook-timeout=10000,	--hookTimeout=10000Default	timeout	of	a	hook	in	milliseconds.	Use	0	to	disable
timeout	completely.teardownTimeout	*	Type:	numberDefault:	10000CLI:	--teardown-timeout=5000,	--teardownTimeout=5000Default	timeout	to	wait	for	close	when	Vitest	shuts	down,	in	millisecondssilent	*	Type:	boolean	|	'passed-only'Default:	falseCLI:	--silent,	--silent=falseSilent	console	output	from	tests.Use	'passed-only'	to	see	logs	from	failing
tests	only.	Logs	from	failing	tests	are	printed	after	a	test	has	finished.setupFiles	Path	to	setup	files.	They	will	be	run	before	each	test	file.You	can	use	process.env.VITEST_POOL_ID	(integer-like	string)	inside	to	distinguish	between	threads.TIPNote,	that	if	you	are	running	--isolate=false,	this	setup	file	will	be	run	in	the	same	global	scope	multiple
times.	Meaning,	that	you	are	accessing	the	same	global	object	before	each	test,	so	make	sure	you	are	not	doing	the	same	thing	more	than	you	need.For	example,	you	may	rely	on	a	global	variable:tsimport	{	config	}	from	'@some-testing-lib'	if	(!globalThis.defined)	{	config.plugins	=	[myCoolPlugin]	computeHeavyThing()	globalThis.defined	=	true	}	//
hooks	are	reset	before	each	suite	afterEach(()	=>	{	cleanup()	})	globalThis.resetBeforeEachTest	=	trueprovide	2.1.0+	Type:	PartialDefine	values	that	can	be	accessed	inside	your	tests	using	inject	method.WARNINGProperties	have	to	be	strings	and	values	need	to	be	serializable	because	this	object	will	be	transferred	between	different	processes.TIPIf
you	are	using	TypeScript,	you	will	need	to	augment	ProvidedContext	type	for	type	safe	access:tsdeclare	module	'vitest'	{	export	interface	ProvidedContext	{	API_KEY:	string	}	}	//	mark	this	file	as	a	module	so	augmentation	works	correctly	export	{}globalSetup	Path	to	global	setup	files,	relative	to	project	root.A	global	setup	file	can	either	export
named	functions	setup	and	teardown	or	a	default	function	that	returns	a	teardown	function	(example).Since	Vitest	3,	you	can	define	a	custom	callback	function	to	be	called	when	Vitest	reruns	tests.	If	the	function	is	asynchronous,	the	runner	will	wait	for	it	to	complete	before	executing	tests.	Note	that	you	cannot	destruct	the	project	like	{
onTestsRerun	}	because	it	relies	on	the	context.tsimport	type	{	TestProject	}	from	'vitest/node'	export	default	function	setup(project:	TestProject)	{	project.onTestsRerun(async	()	=>	{	await	restartDb()	})	}forceRerunTriggers	*	Type:	string[]Default:	['**/package.json/**',	'**/vitest.config.*/**',	'**/vite.config.*/**']Glob	pattern	of	file	paths	that	will
trigger	the	whole	suite	rerun.	When	paired	with	the	--changed	argument	will	run	the	whole	test	suite	if	the	trigger	is	found	in	the	git	diff.Useful	if	you	are	testing	calling	CLI	commands,	because	Vite	cannot	construct	a	module	graph:tstest('execute	a	script',	async	()	=>	{	//	Vitest	cannot	rerun	this	test,	if	content	of	`dist/index.js`	changes	await
execa('node',	['dist/index.js'])	})TIPMake	sure	that	your	files	are	not	excluded	by	server.watch.ignored.coverage	*	You	can	use	v8,	istanbul	or	a	custom	coverage	solution	for	coverage	collection.You	can	provide	coverage	options	to	CLI	with	dot	notation:shnpx	vitest	--coverage.enabled	--coverage.provider=istanbul	--coverage.allWARNINGIf	you	are
using	coverage	options	with	dot	notation,	don't	forget	to	specify	--coverage.enabled.	Do	not	provide	a	single	--coverage	option	in	that	case.coverage.provider	Type:	'v8'	|	'istanbul'	|	'custom'Default:	'v8'CLI:	--coverage.provider=Use	provider	to	select	the	tool	for	coverage	collection.coverage.enabled	Type:	booleanDefault:	falseAvailable	for	providers:
'v8'	|	'istanbul'CLI:	--coverage.enabled,	--coverage.enabled=falseEnables	coverage	collection.	Can	be	overridden	using	--coverage	CLI	option.coverage.include	Type:	string[]Default:	['**']Available	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.include=,	--coverage.include=	--coverage.include=List	of	files	included	in	coverage	as	glob
patternscoverage.extension	Type:	string	|	string[]Default:	['.js',	'.cjs',	'.mjs',	'.ts',	'.mts',	'.tsx',	'.jsx',	'.vue',	'.svelte',	'.marko',	'.astro']Available	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.extension=,	--coverage.extension=	--coverage.extension=coverage.exclude	js['coverage/**',	'dist/**',	'**/node_modules/**',	'**/[.]**',	'packages/*/test?(s)/**',	'**/*.d.ts',
'**/virtual:*',	'**/__x00__*',	'**/\x00*',	'cypress/**',	'test?(s)/**',	'test?(-*).?(c|m)[jt]s?(x)',	'**/*{.,-}{test,spec,bench,benchmark}?(-d).?(c|m)[jt]s?(x)',	'**/__tests__/**',	'**/{karma,rollup,webpack,vite,vitest,jest,ava,babel,nyc,cypress,tsup,build,eslint,prettier}.config.*',	'**/vitest.{workspace,projects}.[jt]s?(on)',	'**/.{eslint,mocha,prettier}rc.{?(c|m)js,yml}',
]Available	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.exclude=,	--coverage.exclude=	--coverage.exclude=List	of	files	excluded	from	coverage	as	glob	patterns.This	option	overrides	all	default	options.	Extend	the	default	options	when	adding	new	patterns	to	ignore:tsimport	{	coverageConfigDefaults,	defineConfig	}	from	'vitest/config'	export	default
defineConfig({	test:	{	coverage:	{	exclude:	['**/custom-pattern/**',	...coverageConfigDefaults.exclude]	},	},	})NOTEVitest	automatically	adds	test	files	include	patterns	to	the	coverage.exclude.	It's	not	possible	to	show	coverage	of	test	files.coverage.all	Type:	booleanDefault:	trueAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.all,	--
coverage.all=falseWhether	to	include	all	files,	including	the	untested	ones	into	report.coverage.clean	Type:	booleanDefault:	trueAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.clean,	--coverage.clean=falseClean	coverage	results	before	running	testscoverage.cleanOnRerun	Type:	booleanDefault:	trueAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--
coverage.cleanOnRerun,	--coverage.cleanOnRerun=falseClean	coverage	report	on	watch	rerun.	Set	to	false	to	preserve	coverage	results	from	previous	run	in	watch	mode.coverage.reportsDirectory	Type:	stringDefault:	'./coverage'Available	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.reportsDirectory=WARNINGVitest	will	delete	this	directory	before
running	tests	if	coverage.clean	is	enabled	(default	value).Directory	to	write	coverage	report	to.To	preview	the	coverage	report	in	the	output	of	HTML	reporter,	this	option	must	be	set	as	a	sub-directory	of	the	html	report	directory	(for	example	./html/coverage).coverage.reporter	Type:	string	|	string[]	|	[string,	{}][]Default:	['text',	'html',	'clover',
'json']Available	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.reporter=,	--coverage.reporter=	--coverage.reporter=Coverage	reporters	to	use.	See	istanbul	documentation	for	detailed	list	of	all	reporters.	See	@types/istanbul-reporter	for	details	about	reporter	specific	options.The	reporter	has	three	different	types:A	single	reporter:	{	reporter:	'html'
}Multiple	reporters	without	options:	{	reporter:	['html',	'json']	}A	single	or	multiple	reporters	with	reporter	options:	ts{	reporter:	[['lcov',	{	'projectRoot':	'./src'	}],	['json',	{	'file':	'coverage.json'	}],	['text']]	}You	can	also	pass	custom	coverage	reporters.	See	Guide	-	Custom	Coverage	Reporter	for	more	information.ts	{	reporter:	[//	Specify	reporter
using	name	of	the	NPM	package	'@vitest/custom-coverage-reporter',	['@vitest/custom-coverage-reporter',	{	someOption:	true	}],	//	Specify	reporter	using	local	path	'/absolute/path/to/custom-reporter.cjs',	['/absolute/path/to/custom-reporter.cjs',	{	someOption:	true	}],]	}You	can	check	your	coverage	report	in	Vitest	UI:	check	Vitest	UI	Coverage	for
more	details.coverage.reportOnFailure	Type:	booleanDefault:	falseAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.reportOnFailure,	--coverage.reportOnFailure=falseGenerate	coverage	report	even	when	tests	fail.coverage.allowExternal	Type:	booleanDefault:	falseAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.allowExternal,	--
coverage.allowExternal=falseCollect	coverage	of	files	outside	the	project	root.coverage.excludeAfterRemap	2.1.0+	Type:	booleanDefault:	falseAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.excludeAfterRemap,	--coverage.excludeAfterRemap=falseApply	exclusions	again	after	coverage	has	been	remapped	to	original	sources.	This	is	useful
when	your	source	files	are	transpiled	and	may	contain	source	maps	of	non-source	files.Use	this	option	when	you	are	seeing	files	that	show	up	in	report	even	if	they	match	your	coverage.exclude	patterns.coverage.skipFull	Type:	booleanDefault:	falseAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.skipFull,	--coverage.skipFull=falseDo	not	show
files	with	100%	statement,	branch,	and	function	coverage.coverage.thresholds	Options	for	coverage	thresholds.If	a	threshold	is	set	to	a	positive	number,	it	will	be	interpreted	as	the	minimum	percentage	of	coverage	required.	For	example,	setting	the	lines	threshold	to	90	means	that	90%	of	lines	must	be	covered.If	a	threshold	is	set	to	a	negative
number,	it	will	be	treated	as	the	maximum	number	of	uncovered	items	allowed.	For	example,	setting	the	lines	threshold	to	-10	means	that	no	more	than	10	lines	may	be	uncovered.ts{	coverage:	{	thresholds:	{	//	Requires	90%	function	coverage	functions:	90,	//	Require	that	no	more	than	10	lines	are	uncovered	lines:	-10,	}	}	}coverage.thresholds.lines
Type:	numberAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.thresholds.lines=Global	threshold	for	lines.coverage.thresholds.functions	Type:	numberAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.thresholds.functions=Global	threshold	for	functions.coverage.thresholds.branches	Type:	numberAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--
coverage.thresholds.branches=Global	threshold	for	branches.coverage.thresholds.statements	Type:	numberAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.thresholds.statements=Global	threshold	for	statements.coverage.thresholds.perFile	Type:	booleanDefault:	falseAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.thresholds.perFile,	--
coverage.thresholds.perFile=falseCheck	thresholds	per	file.Type:	booleanDefault:	falseAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.thresholds.autoUpdate=Update	all	threshold	values	lines,	functions,	branches	and	statements	to	configuration	file	when	current	coverage	is	better	than	the	configured	thresholds.	This	option	helps	to	maintain
thresholds	when	coverage	is	improved.coverage.thresholds.100	Type:	booleanDefault:	falseAvailable	for	providers:	'v8'	|	'istanbul'CLI:	--coverage.thresholds.100,	--coverage.thresholds.100=falseSets	global	thresholds	to	100.	Shortcut	for	--coverage.thresholds.lines	100	--coverage.thresholds.functions	100	--coverage.thresholds.branches	100	--
coverage.thresholds.statements	100.coverage.thresholds[glob-pattern]	Type:	{	statements?:	number	functions?:	number	branches?:	number	lines?:	number	}Default:	undefinedAvailable	for	providers:	'v8'	|	'istanbul'Sets	thresholds	for	files	matching	the	glob	pattern.NOTEVitest	counts	all	files,	including	those	covered	by	glob-patterns,	into	the	global
coverage	thresholds.	This	is	different	from	Jest	behavior.ts{	coverage:	{	thresholds:	{	//	Thresholds	for	all	files	functions:	95,	branches:	70,	//	Thresholds	for	matching	glob	pattern	'src/utils/**.ts':	{	statements:	95,	functions:	90,	branches:	85,	lines:	80,	},	//	Files	matching	this	pattern	will	only	have	lines	thresholds	set.	//	Global	thresholds	are	not
inherited.	'**/math.ts':	{	lines:	100,	}	}	}	}coverage.thresholds[glob-pattern].100	2.1.0+	Type:	booleanDefault:	falseAvailable	for	providers:	'v8'	|	'istanbul'Sets	thresholds	to	100	for	files	matching	the	glob	pattern.ts{	coverage:	{	thresholds:	{	//	Thresholds	for	all	files	functions:	95,	branches:	70,	//	Thresholds	for	matching	glob	pattern	'src/utils/**.ts':	{
100:	true	},	'**/math.ts':	{	100:	true	}	}	}	}coverage.ignoreEmptyLines	Type:	booleanDefault:	true	(false	in	v1)Available	for	providers:	'v8'CLI:	--coverage.ignoreEmptyLines=Ignore	empty	lines,	comments	and	other	non-runtime	code,	e.g.	Typescript	types.This	option	works	only	if	the	used	compiler	removes	comments	and	other	non-runtime	code	from
the	transpiled	code.	By	default	Vite	uses	ESBuild	which	removes	comments	and	Typescript	types	from	.ts,	.tsx	and	.jsx	files.If	you	want	to	apply	ESBuild	to	other	files	as	well,	define	them	in	esbuild	options:tsimport	{	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	esbuild:	{	//	Transpile	all	files	with	ESBuild	to	remove	comments	from
code	coverage.	//	Required	for	`test.coverage.ignoreEmptyLines`	to	work:	include:	['**/*.js',	'**/*.jsx',	'**/*.mjs',	'**/*.ts',	'**/*.tsx'],	},	test:	{	coverage:	{	provider:	'v8',	ignoreEmptyLines:	true,	},	},	})coverage.ignoreClassMethods	Type:	string[]Default:	[]Available	for	providers:	'istanbul'CLI:	--coverage.ignoreClassMethods=Set	to	array	of	class	method
names	to	ignore	for	coverage.	See	istanbul	documentation	for	more	information.coverage.watermarks	ts{	statements?:	[number,	number],	functions?:	[number,	number],	branches?:	[number,	number],	lines?:	[number,	number]	}ts{	statements:	[50,	80],	functions:	[50,	80],	branches:	[50,	80],	lines:	[50,	80]	}Available	for	providers:	'v8'	|	'istanbul'CLI:	-
-coverage.watermarks.statements=50,80,	--coverage.watermarks.branches=50,80Watermarks	for	statements,	lines,	branches	and	functions.	See	istanbul	documentation	for	more	information.coverage.processingConcurrency	Type:	booleanDefault:	Math.min(20,	os.availableParallelism?.()	??	os.cpus().length)Available	for	providers:	'v8'	|	'istanbul'CLI:	-
-coverage.processingConcurrency=Concurrency	limit	used	when	processing	the	coverage	results.coverage.customProviderModule	Type:	stringAvailable	for	providers:	'custom'CLI:	--coverage.customProviderModule=Specifies	the	module	name	or	path	for	the	custom	coverage	provider	module.	See	Guide	-	Custom	Coverage	Provider	for	more
information.testNamePattern	*	Type	string	|	RegExpCLI:	-t	,	--testNamePattern=,	--test-name-pattern=Run	tests	with	full	names	matching	the	pattern.	If	you	add	OnlyRunThis	to	this	property,	tests	not	containing	the	word	OnlyRunThis	in	the	test	name	will	be	skipped.jsimport	{	expect,	test	}	from	'vitest'	//	run	test('OnlyRunThis',	()	=>	{
expect(true).toBe(true)	})	//	skipped	test('doNotRun',	()	=>	{	expect(true).toBe(true)	})open	*	Type:	booleanDefault:	!process.env.CICLI:	--open,	--open=falseOpen	Vitest	UI	(WIP)api	Type:	boolean	|	numberDefault:	falseCLI:	--api,	--api.port,	--api.host,	--api.strictPortListen	to	port	and	serve	API.	When	set	to	true,	the	default	port	is	51204browser
experimental	Default:	{	enabled:	false	}CLI:	--browser=,	--browser.name=chrome	--browser.headlessConfiguration	for	running	browser	tests.	Please,	refer	to	the	"Browser	Config	Reference"	article.WARNINGThis	is	an	experimental	feature.	Breaking	changes	might	not	follow	SemVer,	please	pin	Vitest's	version	when	using	it.Type:	booleanDefault:
falseWill	call	.mockClear()	on	all	spies	before	each	test.	This	will	clear	mock	history	without	affecting	mock	implementations.mockReset	Type:	booleanDefault:	falseWill	call	.mockReset()	on	all	spies	before	each	test.	This	will	clear	mock	history	and	reset	each	implementation	to	its	original.restoreMocks	Type:	booleanDefault:	falseWill	call
.mockRestore()	on	all	spies	before	each	test.	This	will	clear	mock	history,	restore	each	implementation	to	its	original,	and	restore	original	descriptors	of	spied-on	objects..unstubEnvs	Type:	booleanDefault:	falseWill	call	vi.unstubAllEnvs	before	each	test.unstubGlobals	Type:	booleanDefault:	falseWill	call	vi.unstubAllGlobals	before	each
test.testTransformMode	Determine	the	transform	method	for	all	modules	imported	inside	a	test	that	matches	the	glob	pattern.	By	default,	relies	on	the	environment.	For	example,	tests	with	JSDOM	environment	will	process	all	files	with	ssr:	false	flag	and	tests	with	Node	environment	process	all	modules	with	ssr:	true.testTransformMode.ssr	Type:
string[]Default:	[]Use	SSR	transform	pipeline	for	all	modules	inside	specified	tests.	Vite	plugins	will	receive	ssr:	true	flag	when	processing	those	files.testTransformMode.web	Type:	string[]Default:	[]First	do	a	normal	transform	pipeline	(targeting	browser),	then	do	a	SSR	rewrite	to	run	the	code	in	Node.	Vite	plugins	will	receive	ssr:	false	flag	when
processing	those	files.snapshotFormat	*	Type:	PrettyFormatOptionsFormat	options	for	snapshot	testing.	These	options	are	passed	down	to	pretty-format.snapshotSerializers	*	Type:	string[]Default:	[]A	list	of	paths	to	snapshot	serializer	modules	for	snapshot	testing,	useful	if	you	want	add	custom	snapshot	serializers.	See	Custom	Serializer	for	more
information.resolveSnapshotPath	*	Type:	(testPath:	string,	snapExtension:	string,	context:	{	config:	SerializedConfig	})	=>	stringDefault:	stores	snapshot	files	in	__snapshots__	directoryOverrides	default	snapshot	path.	For	example,	to	store	snapshots	next	to	test	files:tsimport	{	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	test:	{
resolveSnapshotPath:	(testPath,	snapExtension)	=>	testPath	+	snapExtension,	},	})allowOnly	Type:	booleanDefault:	!process.env.CICLI:	--allowOnly,	--allowOnly=falseAllow	tests	and	suites	that	are	marked	as	only.dangerouslyIgnoreUnhandledErrors	*	Type:	booleanDefault:	falseCLI:	--dangerouslyIgnoreUnhandledErrors	--
dangerouslyIgnoreUnhandledErrors=falseIgnore	any	unhandled	errors	that	occur.passWithNoTests	*	Type:	booleanDefault:	falseCLI:	--passWithNoTests,	--passWithNoTests=falseVitest	will	not	fail,	if	no	tests	will	be	found.logHeapUsage	Type:	booleanDefault:	falseCLI:	--logHeapUsage,	--logHeapUsage=falseShow	heap	usage	after	each	test.	Useful	for
debugging	memory	leaks.css	Type:	boolean	|	{	include?,	exclude?,	modules?	}Configure	if	CSS	should	be	processed.	When	excluded,	CSS	files	will	be	replaced	with	empty	strings	to	bypass	the	subsequent	processing.	CSS	Modules	will	return	a	proxy	to	not	affect	runtime.css.include	Type:	RegExp	|	RegExp[]Default:	[]RegExp	pattern	for	files	that
should	return	actual	CSS	and	will	be	processed	by	Vite	pipeline.TIPTo	process	all	CSS	files,	use	/.+/.css.exclude	Type:	RegExp	|	RegExp[]Default:	[]RegExp	pattern	for	files	that	will	return	an	empty	CSS	file.css.modules	Type:	{	classNameStrategy?	}Default:	{}css.modules.classNameStrategy	Type:	'stable'	|	'scoped'	|	'non-scoped'Default:	'stable'If	you
decide	to	process	CSS	files,	you	can	configure	if	class	names	inside	CSS	modules	should	be	scoped.	You	can	choose	one	of	the	options:stable:	class	names	will	be	generated	as	_${name}_${hashedFilename},	which	means	that	generated	class	will	stay	the	same,	if	CSS	content	is	changed,	but	will	change,	if	the	name	of	the	file	is	modified,	or	file	is
moved	to	another	folder.	This	setting	is	useful,	if	you	use	snapshot	feature.scoped:	class	names	will	be	generated	as	usual,	respecting	css.modules.generateScopedName	method,	if	you	have	one	and	CSS	processing	is	enabled.	By	default,	filename	will	be	generated	as	_${name}_${hash},	where	hash	includes	filename	and	content	of	the	file.non-
scoped:	class	names	will	not	be	hashed.WARNINGBy	default,	Vitest	exports	a	proxy,	bypassing	CSS	Modules	processing.	If	you	rely	on	CSS	properties	on	your	classes,	you	have	to	enable	CSS	processing	using	include	option.maxConcurrency	Type:	numberDefault:	5CLI:	--max-concurrency=10,	--maxConcurrency=10A	number	of	tests	that	are	allowed
to	run	at	the	same	time	marked	with	test.concurrent.Test	above	this	limit	will	be	queued	to	run	when	available	slot	appears.cache	*	Type:	falseCLI:	--no-cache,	--cache=falseUse	this	option	if	you	want	to	disable	the	cache	feature.	At	the	moment	Vitest	stores	cache	for	test	results	to	run	the	longer	and	failed	tests	first.The	cache	directory	is	controlled
by	the	Vite's	cacheDir	option:tsimport	{	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	cacheDir:	'custom-folder/.vitest'	})You	can	limit	the	directory	only	for	Vitest	by	using	process.env.VITEST:tsimport	{	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	cacheDir:	process.env.VITEST	?	'custom-folder/.vitest'	:
undefined	})sequence	Type:	{	sequencer?,	shuffle?,	seed?,	hooks?,	setupFiles?	}Options	for	how	tests	should	be	sorted.You	can	provide	sequence	options	to	CLI	with	dot	notation:shnpx	vitest	--sequence.shuffle	--sequence.seed=1000sequence.sequencer	*	Type:	TestSequencerConstructorDefault:	BaseSequencerA	custom	class	that	defines	methods	for
sharding	and	sorting.	You	can	extend	BaseSequencer	from	vitest/node,	if	you	only	need	to	redefine	one	of	the	sort	and	shard	methods,	but	both	should	exist.Sharding	is	happening	before	sorting,	and	only	if	--shard	option	is	provided.sequence.shuffle	Type:	boolean	|	{	files?,	tests?	}Default:	falseCLI:	--sequence.shuffle,	--sequence.shuffle=falseIf	you
want	files	and	tests	to	run	randomly,	you	can	enable	it	with	this	option,	or	CLI	argument	--sequence.shuffle.Vitest	usually	uses	cache	to	sort	tests,	so	long	running	tests	start	earlier	-	this	makes	tests	run	faster.	If	your	files	and	tests	will	run	in	random	order	you	will	lose	this	performance	improvement,	but	it	may	be	useful	to	track	tests	that
accidentally	depend	on	another	run	previously.sequence.shuffle.files	Type:	booleanDefault:	falseCLI:	--sequence.shuffle.files,	--sequence.shuffle.files=falseWhether	to	randomize	files,	be	aware	that	long	running	tests	will	not	start	earlier	if	you	enable	this	option.sequence.shuffle.tests	Type:	booleanDefault:	falseCLI:	--sequence.shuffle.tests,	--
sequence.shuffle.tests=falseWhether	to	randomize	tests.sequence.concurrent	Type:	booleanDefault:	falseCLI:	--sequence.concurrent,	--sequence.concurrent=falseIf	you	want	tests	to	run	in	parallel,	you	can	enable	it	with	this	option,	or	CLI	argument	--sequence.concurrent.sequence.seed	*	Type:	numberDefault:	Date.now()CLI:	--
sequence.seed=1000Sets	the	randomization	seed,	if	tests	are	running	in	random	order.sequence.hooks	Type:	'stack'	|	'list'	|	'parallel'Default:	'stack'CLI:	--sequence.hooks=Changes	the	order	in	which	hooks	are	executed.stack	will	order	"after"	hooks	in	reverse	order,	"before"	hooks	will	run	in	the	order	they	were	definedlist	will	order	all	hooks	in	the
order	they	are	definedparallel	will	run	hooks	in	a	single	group	in	parallel	(hooks	in	parent	suites	will	still	run	before	the	current	suite's	hooks)TIPThis	option	doesn't	affect	onTestFinished.	It	is	always	called	in	reverse	order.sequence.setupFiles	Type:	'list'	|	'parallel'Default:	'parallel'CLI:	--sequence.setupFiles=Changes	the	order	in	which	setup	files	are
executed.list	will	run	setup	files	in	the	order	they	are	definedparallel	will	run	setup	files	in	paralleltypecheck	Options	for	configuring	typechecking	test	environment.typecheck.enabled	Type:	booleanDefault:	falseCLI:	--typecheck,	--typecheck.enabledEnable	typechecking	alongside	your	regular	tests.typecheck.only	Type:	booleanDefault:	falseCLI:	--
typecheck.onlyRun	only	typecheck	tests,	when	typechecking	is	enabled.	When	using	CLI,	this	option	will	automatically	enable	typechecking.typecheck.checker	Type:	'tsc'	|	'vue-tsc'	|	stringDefault:	tscWhat	tools	to	use	for	type	checking.	Vitest	will	spawn	a	process	with	certain	parameters	for	easier	parsing,	depending	on	the	type.	Checker	should
implement	the	same	output	format	as	tsc.You	need	to	have	a	package	installed	to	use	typechecker:tsc	requires	typescript	packagevue-tsc	requires	vue-tsc	packageYou	can	also	pass	down	a	path	to	custom	binary	or	command	name	that	produces	the	same	output	as	tsc	--noEmit	--pretty	false.typecheck.include	Type:	string[]Default:	['**/*.{test,spec}-d.?
(c|m)[jt]s?(x)']Glob	pattern	for	files	that	should	be	treated	as	test	filestypecheck.exclude	Type:	string[]Default:	['**/node_modules/**',	'**/dist/**',	'**/cypress/**',	'**/.{idea,git,cache,output,temp}/**']Glob	pattern	for	files	that	should	not	be	treated	as	test	filestypecheck.allowJs	Type:	booleanDefault:	falseCheck	JS	files	that	have	@ts-check	comment.	If
you	have	it	enabled	in	tsconfig,	this	will	not	overwrite	it.typecheck.ignoreSourceErrors	Type:	booleanDefault:	falseDo	not	fail,	if	Vitest	found	errors	outside	the	test	files.	This	will	not	show	you	non-test	errors	at	all.By	default,	if	Vitest	finds	source	error,	it	will	fail	test	suite.typecheck.tsconfig	Type:	stringDefault:	tries	to	find	closest	tsconfig.jsonPath	to
custom	tsconfig,	relative	to	the	project	root.slowTestThreshold	*	Type:	numberDefault:	300CLI:	--slow-test-threshold=,	--slowTestThreshold=The	number	of	milliseconds	after	which	a	test	or	suite	is	considered	slow	and	reported	as	such	in	the	results.chaiConfig	Type:	{	includeStack?,	showDiff?,	truncateThreshold?	}Default:	{	includeStack:	false,
showDiff:	true,	truncateThreshold:	40	}Equivalent	to	Chai	config.chaiConfig.includeStack	Type:	booleanDefault:	falseInfluences	whether	stack	trace	is	included	in	Assertion	error	message.	Default	of	false	suppresses	stack	trace	in	the	error	message.chaiConfig.showDiff	Type:	booleanDefault:	trueInfluences	whether	or	not	the	showDiff	flag	should	be
included	in	the	thrown	AssertionErrors.	false	will	always	be	false;	true	will	be	true	when	the	assertion	has	requested	a	diff	to	be	shown.chaiConfig.truncateThreshold	Sets	length	threshold	for	actual	and	expected	values	in	assertion	errors.	If	this	threshold	is	exceeded,	for	example	for	large	data	structures,	the	value	is	replaced	with	something	like	[
Array(3)]	or	{	Object	(prop1,	prop2)	}.	Set	it	to	0	if	you	want	to	disable	truncating	altogether.This	config	option	affects	truncating	values	in	test.each	titles	and	inside	the	assertion	error	message.bail	Type:	numberDefault:	0CLI:	--bail=Stop	test	execution	when	given	number	of	tests	have	failed.By	default	Vitest	will	run	all	of	your	test	cases	even	if
some	of	them	fail.	This	may	not	be	desired	for	CI	builds	where	you	are	only	interested	in	100%	successful	builds	and	would	like	to	stop	test	execution	as	early	as	possible	when	test	failures	occur.	The	bail	option	can	be	used	to	speed	up	CI	runs	by	preventing	it	from	running	more	tests	when	failures	have	occurred.retry	Type:	numberDefault:	0CLI:	--
retry=Retry	the	test	specific	number	of	times	if	it	fails.onConsoleLog	*	Type:	(log:	string,	type:	'stdout'	|	'stderr')	=>	boolean	|	voidCustom	handler	for	console.log	in	tests.	If	you	return	false,	Vitest	will	not	print	the	log	to	the	console.Can	be	useful	for	filtering	out	logs	from	third-party	libraries.tsimport	{	defineConfig	}	from	'vitest/config'	export
default	defineConfig({	test:	{	onConsoleLog(log:	string,	type:	'stdout'	|	'stderr'):	boolean	|	void	{	return	!(log	===	'message	from	third	party	library'	&&	type	===	'stdout')	},	},	})onStackTrace	*	Type:	(error:	Error,	frame:	ParsedStack)	=>	boolean	|	voidApply	a	filtering	function	to	each	frame	of	each	stack	trace	when	handling	errors.	The	first
argument,	error,	is	an	object	with	the	same	properties	as	a	standard	Error,	but	it	is	not	an	actual	instance.Can	be	useful	for	filtering	out	stack	trace	frames	from	third-party	libraries.tsimport	type	{	ParsedStack	}	from	'vitest'	import	{	defineConfig	}	from	'vitest/config'	export	default	defineConfig({	test:	{	onStackTrace(error:	Error,	{	file	}:
ParsedStack):	boolean	|	void	{	//	If	we've	encountered	a	ReferenceError,	show	the	whole	stack.	if	(error.name	===	'ReferenceError')	{	return	}	//	Reject	all	frames	from	third	party	libraries.	if	(file.includes('node_modules'))	{	return	false	}	},	},	})diff	Type:	stringCLI:	--diff=DiffOptions	object	or	a	path	to	a	module	which	exports	DiffOptions.	Useful	if
you	want	to	customize	diff	display.For	example,	as	a	config	object:tsimport	{	defineConfig	}	from	'vitest/config'	import	c	from	'picocolors'	export	default	defineConfig({	test:	{	diff:	{	aIndicator:	c.bold('--'),	bIndicator:	c.bold('++'),	omitAnnotationLines:	true,	},	},	})Or	as	a	module:diff.expand	Type:	booleanDefault:	trueCLI:	--diff.expand=falseExpand	all
common	lines.diff.truncateThreshold	Type:	numberDefault:	0CLI:	--diff.truncateThreshold=The	maximum	length	of	diff	result	to	be	displayed.	Diffs	above	this	threshold	will	be	truncated.	Truncation	won't	take	effect	with	default	value	0.diff.truncateAnnotation	Type:	stringDefault:	'...	Diff	result	is	truncated'CLI:	--diff.truncateAnnotation=Annotation
that	is	output	at	the	end	of	diff	result	if	it's	truncated.diff.truncateAnnotationColor	Type:	DiffOptionsColor	=	(arg:	string)	=>	stringDefault:	noColor	=	(string:	string):	string	=>	stringColor	of	truncate	annotation,	default	is	output	with	no	color.diff.printBasicPrototype	Type:	booleanDefault:	falsePrint	basic	prototype	Object	and	Array	in	diff
outputdiff.maxDepth	Type:	numberDefault:	20	(or	8	when	comparing	different	types)Limit	the	depth	to	recurse	when	printing	nested	objectsfakeTimers	Type:	FakeTimerInstallOptsOptions	that	Vitest	will	pass	down	to	@sinon/fake-timers	when	using	vi.useFakeTimers().fakeTimers.now	Type:	number	|	DateDefault:	Date.now()Installs	fake	timers	with
the	specified	Unix	epoch.fakeTimers.toFake	Type:	('setTimeout'	|	'clearTimeout'	|	'setImmediate'	|	'clearImmediate'	|	'setInterval'	|	'clearInterval'	|	'Date'	|	'nextTick'	|	'hrtime'	|	'requestAnimationFrame'	|	'cancelAnimationFrame'	|	'requestIdleCallback'	|	'cancelIdleCallback'	|	'performance'	|	'queueMicrotask')[]Default:	everything	available	globally
except	nextTick	and	queueMicrotaskAn	array	with	names	of	global	methods	and	APIs	to	fake.To	only	mock	setTimeout()	and	nextTick(),	specify	this	property	as	['setTimeout',	'nextTick'].Mocking	nextTick	is	not	supported	when	running	Vitest	inside	node:child_process	by	using	--pool=forks.	NodeJS	uses	process.nextTick	internally	in
node:child_process	and	hangs	when	it	is	mocked.	Mocking	nextTick	is	supported	when	running	Vitest	with	--pool=threads.fakeTimers.loopLimit	Type:	numberDefault:	10_000The	maximum	number	of	timers	that	will	be	run	when	calling	vi.runAllTimers().fakeTimers.shouldAdvanceTime	Type:	booleanDefault:	falseTells	@sinonjs/fake-timers	to
increment	mocked	time	automatically	based	on	the	real	system	time	shift	(e.g.	the	mocked	time	will	be	incremented	by	20ms	for	every	20ms	change	in	the	real	system	time).fakeTimers.advanceTimeDelta	Relevant	only	when	using	with	shouldAdvanceTime:	true.	increment	mocked	time	by	advanceTimeDelta	ms	every	advanceTimeDelta	ms	change	in
the	real	system	time.Type:	booleanDefault:	trueTells	fake	timers	to	clear	"native"	(i.e.	not	fake)	timers	by	delegating	to	their	respective	handlers.	When	disabled,	it	can	lead	to	potentially	unexpected	behavior	if	timers	existed	prior	to	starting	fake	timers	session.workspace	*	Type:	string	|	TestProjectConfigurationCLI:	--workspace=./file.jsDefault:
vitest.{workspace,projects}.{js,ts,json}	close	to	the	config	file	or	rootPath	to	a	workspace	config	file	relative	to	root.Since	Vitest	3,	you	can	also	define	the	workspace	array	in	the	root	config.	If	the	workspace	is	defined	in	the	config	manually,	Vitest	will	ignore	the	vitest.workspace	file	in	the	root.isolate	Type:	booleanDefault:	trueCLI:	--no-isolate,	--
isolate=falseRun	tests	in	an	isolated	environment.	This	option	has	no	effect	on	vmThreads	and	vmForks	pools.Disabling	this	option	might	improve	performance	if	your	code	doesn't	rely	on	side	effects	(which	is	usually	true	for	projects	with	node	environment).TIPYou	can	disable	isolation	for	specific	pools	by	using	poolOptions
property.includeTaskLocation	Type:	booleanDefault:	falseShould	location	property	be	included	when	Vitest	API	receives	tasks	in	reporters.	If	you	have	a	lot	of	tests,	this	might	cause	a	small	performance	regression.The	location	property	has	column	and	line	values	that	correspond	to	the	test	or	describe	position	in	the	original	file.This	option	will	be
auto-enabled	if	you	don't	disable	it	explicitly,	and	you	are	running	Vitest	with:TIPThis	option	has	no	effect	if	you	do	not	use	custom	code	that	relies	on	this.snapshotEnvironment	Path	to	a	custom	snapshot	environment	implementation.	This	is	useful	if	you	are	running	your	tests	in	an	environment	that	doesn't	support	Node.js	APIs.	This	option	doesn't
have	any	effect	on	a	browser	runner.This	object	should	have	the	shape	of	SnapshotEnvironment	and	is	used	to	resolve	and	read/write	snapshot	files:tsexport	interface	SnapshotEnvironment	{	getVersion:	()	=>	string	getHeader:	()	=>	string	resolvePath:	(filepath:	string)	=>	Promise	resolveRawPath:	(testPath:	string,	rawPath:	string)	=>	Promise
saveSnapshotFile:	(filepath:	string,	snapshot:	string)	=>	Promise	readSnapshotFile:	(filepath:	string)	=>	Promise	removeSnapshotFile:	(filepath:	string)	=>	Promise	}You	can	extend	default	VitestSnapshotEnvironment	from	vitest/snapshot	entry	point	if	you	need	to	overwrite	only	a	part	of	the	API.WARNINGThis	is	a	low-level	option	and	should	be
used	only	for	advanced	cases	where	you	don't	have	access	to	default	Node.js	APIs.If	you	just	need	to	configure	snapshots	feature,	use	snapshotFormat	or	resolveSnapshotPath	options.env	Type:	PartialEnvironment	variables	available	on	process.env	and	import.meta.env	during	tests.	These	variables	will	not	be	available	in	the	main	process	(in
globalSetup,	for	example).expect	expect.requireAssertions	Type:	booleanDefault:	falseThe	same	as	calling	expect.hasAssertions()	at	the	start	of	every	test.	This	makes	sure	that	no	test	will	pass	accidentally.TIPThis	only	works	with	Vitest's	expect.	If	you	use	assert	or	.should	assertions,	they	will	not	count,	and	your	test	will	fail	due	to	the	lack	of	expect
assertions.You	can	change	the	value	of	this	by	calling	vi.setConfig({	expect:	{	requireAssertions:	false	}	}).	The	config	will	be	applied	to	every	subsequent	expect	call	until	the	vi.resetConfig	is	called	manually.expect.poll	Global	configuration	options	for	expect.poll.	These	are	the	same	options	you	can	pass	down	to	expect.poll(condition,
options).expect.poll.interval	Polling	interval	in	millisecondsexpect.poll.timeout	Type:	numberDefault:	1000Polling	timeout	in	millisecondsprintConsoleTrace	Type:	booleanDefault:	falseAlways	print	console	traces	when	calling	any	console	method.	This	is	useful	for	debugging.	This	tutorial	explains	how	to	set	up	the	vitest.config.ts	configuration	file	used
in	a	Vite	React	(TypeScript)	project.	It	effectively	breaks	down	each	configuration	option	and	explains	its	purpose	in	simple	terms.import	{	defineConfig,	configDefaults	}	from	'vitest/config'export	default	defineConfig({	test:	{	globals:	true,	environment:	'jsdom',	css:	true,	setupFiles:	'./vitest.setup.ts',	exclude:	[...configDefaults.exclude,	'**/e2e/**'],	//
Example:	Exclude	e2e	tests	coverage:	{	provider:	'v8',	//	Use	Vite's	default	coverage	provider	reporter:	['text',	'json',	'html']	}	}})Let’s	explain	the	code	step	by	step:import	{	defineConfig,	configDefaults	}	from	'vitest/config'What	it	does:You’re	bringing	in	a	function	defineConfig	to	define	your	config	in	a	cleaner	way.configDefaults	gives	you	Vitest’s
built-in	default	settings,	so	you	can	extend	or	tweak	them.export	default	defineConfig({	test:	{	...	}})What	it	does:You’re	exporting	the	configuration	so	Vitest	can	use	it	when	it	runs	your	tests.Inside	the	test	object:globals:	trueThis	allows	you	to	use	describe,	it,	expect,	etc.,	without	importing	them	into	every	file.	It	makes	your	test	code	cleaner	and
easier	to	read.environment:	jsdomSimulates	a	browser	environment	using	jsdom	(a	fake	browser	in	Node.js).	It	is	necessary	for	testing	things	like	the	DOM	(e.g.,	document,	window)	in	React	apps.css:	trueAllows	importing	and	using	CSS	inside	your	components	during	tests.	Without	this,	Vitest	might	throw	errors	when	it	sees	CSS	imports.setupFiles:
”./vitest.setup.ts”Runs	this	file	before	any	test	starts.	Great	for	setting	up	things	like:-	@testing-library/jest-dom-	Mocking	functions	or	global	objectsexclude:	[...configDefaults.exclude,”**/e2e/**”]Skips	certain	files	or	folders	when	running	tests.	Here	you	are	saying:“Use	Vitest’s	default	skip	list,	and	also	ignore	anything	inside	an	e2e	folder.”coverage:
{...}This	tells	Vitest	to	track	and	report	how	much	of	your	code	is	tested.	Inside	coverage:-	provider:	"v-8"	—	Use	the	default	Vite/Vitest	coverage	tool	(based	on	the	V8	JavaScript	engine).-	reporter:	["text","json","html"]—	You’ll	get:	Text	output	in	your	terminal	JSON	file	for	tooling	An	interactive	HTML	report	to	open	in	your	browser.Summaryglobals:
trueIt	lets	you	use	describe,	expect,	etc.,	without	importsjsdomIt	creates	a	fake	browser	for	testing	DOM-based	code	(like	React)setupFilesPrepares	your	environment	before	tests	runexcludeSkips	files/folders	you	don’t	want	testedcoverageTells	you	which	lines	of	your	code	are	testedcss:	trueAllows	CSS	in	testable	componentsLearn	how	to	Set	Up
Testing	in	Your	Vite	React	(Typescript)	Project

