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Who	put	letters	into	math

Who	Added	Letter	to	Math?The	introduction	of	letters	into	mathematics	was	not	the	product	of	a	single	genius	but	rather	a	method	refined	over	many	centuries	by	many	brilliant	brains.	The	voyage	of	incorporating	letters	into	mathematics	has	been	a	rich	and	collaborative	undertaking,	from	the	early	inklings	in	ancient	civilizations	to	the	structured
ways	offered	by	luminaries	like	Viète	and	Euler.Letters	are	used	almost	exclusively	now	in	mathematics	because	they	provide	a	versatile	and	expressive	vocabulary	for	expressing	intricate	ideas	and	connections.	This	dynamic	and	ever-expanding	language	is	a	tribute	to	the	brilliance	of	humans	and	the	never-ending	path	of	mathematical	discovery.In
the	following,	we	take	a	trip	through	time	to	learn	more	about	the	people	who	made	it	possible	for	mathematics	to	become	the	complex	and	refined	field	that	it	is	today.The	Origins	of	Written	Language	in	Ancient	CulturesMathematical	concepts	developed	from	ancient	cultures’	everyday	practices	and	astronomical	observations.	These	early
civilizations	laid	the	groundwork	for	later,	more	complex	mathematical	languages	by	developing	symbolic	and	notational	systems	for	representing	numbers.	Let’s	examine	more	closely	how	early	cultures	fostered	the	germination	of	mathematical	notation:Numerical	Systems	Developed	by	the	BabyloniansThe	Babylonians	created	one	of	the	first	known
numeral	systems	in	the	year	2000	BCE.	Like	our	modern	base-10	system,	their	base-60	(sexagesimal)	number	system	was	positional	and	could	be	used	to	denote	fractions.	Despite	not	using	letters,	this	numeric	system	gave	mathematics	its	first	taste	of	notation	and	the	possibilities	of	symbols.	This	method	was	widely	used	in	astronomy	because	it
allowed	for	more	accurate	calculations	of	heavenly	motions.Hieratic	and	Demotic	Writing	Systems	of	Ancient	EgyptThe	ancient	Egyptians	used	a	decimal	system	that	was	written	down	in	hieroglyphs.	There	was	a	growing	demand	for	better	notation	systems	as	the	complexity	of	administrative	work	and	architectural	design	increased.As	a	result	of	the
need	for	faster	and	more	versatile	notations,	notably	in	mathematical	papyri	recording	land	measures	and	astronomical	computations,	the	hieratic	and,	subsequently,	the	demotic	scripts	evolved	as	replacements	for	the	onerous	hieroglyphs.Greek	Culture:	A	Source	of	Proto-Algebra	and	Geometric	InsightThe	Greeks	took	a	giant	leap	forward	in
mathematics,	creating	the	basis	for	what	we	now	know	as	algebra	and	geometry.	However,	their	geometric	approach	to	mathematics	created	a	rich	and	symbolic	language,	which	made	up	for	the	limitations	of	their	notation	system,	which	used	letters	from	the	Greek	alphabet	to	represent	numbers.	A	more	abstract,	notational	future	where	symbols
might	encompass	complicated	theories	and	proofs	was	hinted	at	when	figures,	diagrams,	and	logical	proofs	became	standard	fare	in	mathematical	discourse.Brahmi	Numerals	and	Early	Algebra	in	Ancient	IndiaBrahmi	numbers,	developed	by	ancient	Indian	mathematicians,	are	a	precursor	to	the	contemporary	decimal	numeral	system.	Algebraic
ideas,	such	as	zero	and	negative	integers,	were	already	being	represented	by	symbols	in	the	writings	of	Indian	mathematicians	like	Brahmagupta.	The	symbolic	representation	of	equations	and	mathematical	processes	may	be	traced	back	to	this	time	period	and	its	mathematical	scripts,	which	signal	a	move	toward	more	abstract	thought	and
notation.History	of	Algebraic	Notation	Begins	in	the	Middle	AgesBetween	the	5th	through	15th	centuries,	the	Middle	Ages	saw	a	continuance	and	development	of	mathematical	ideas	and	methods.	In	this	period,	traditional	wisdom	was	combined	with	cutting-edge	research,	paving	the	way	for	the	development	of	algebraic	notation.	Let’s	look	at	the
Middle	Ages	as	a	transitional	period	leading	up	to	the	advent	of	algebraic	notation:The	Safekeeping	and	Passing	Down	of	Elder	WisdomThe	Islamic	Golden	Age	of	the	early	Middle	Ages	was	instrumental	in	preserving	and	transmitting	much	of	the	ancient	knowledge	from	the	Greeks,	Indians,	and	Babylonians.	Scholars	in	the	Islamic	world	preserved
and	translated	foundational	works,	creating	a	link	that	allowed	this	knowledge	to	be	brought	back	to	Europe.	The	addition	of	commentary,	improvements,	and	fresh	ideas	to	these	translations	suggests	a	shift	toward	more	codified	notation.The	Development	of	Algebra	in	the	Islamic	Golden	AgeScholars	like	Al-Khwarizmi	made	major	contributions	to
the	development	of	algebra	throughout	the	Islamic	Golden	Age	(8th	to	14th	century).	Al-Khwarizmi	established	fundamental	algebraic	principles	and	processes	in	his	foundational	book,	“Kitab	al-Mukhtasar	fi	Hisab	al-Jabr	wal-Muqabala”	(The	Compendious	Book	on	Calculation	by	Completion	and	Balancing).	Algebra	had	its	roots	in	this	work,	even	if
the	notation	was	mostly	verbal	rather	than	symbolic.The	Origins	of	Symbolic	WritingDuring	this	time,	there	occurred	a	transition	from	mostly	verbal	to	primarily	symbolic	modes	of	communication.	At	first,	these	signs	were	quite	simple,	and	they	were	used	to	represent	numbers	and	operations	in	a	haphazard	fashion.	Eventually,	though,	academics
standardized	on	a	single	method,	laying	the	groundwork	for	the	symbolic	language	used	in	contemporary	algebra.Introduction	of	the	Hindu-Arabic	Numeral	System	Due	to	FibonacciFibonacci,	an	Italian	mathematician,	published	“Liber	Abaci”	(The	Book	of	Calculation)	in	the	13th	century,	which	is	often	credited	for	bringing	Hindu-Arabic	numbers	to
Europe.	The	introduction	of	zero	and	the	ability	to	do	more	sophisticated	calculations	sparked	a	mathematical	revolution	in	Europe,	leading	to	the	emergence	of	new,	more	abstract	ideas	like	the	foundations	of	algebraic	notation.The	Development	of	Notation	in	the	Later	Middle	AgesAs	the	Middle	Ages	neared	their	end,	conditions	improved	for	the
development	of	algebraic	notation.	Beginning	in	the	Middle	Ages,	European	scientists	started	to	substitute	symbols	for	words	in	mathematical	literature.	This	trend	continued	into	the	Renaissance.Notation	for	algebra	that	uses	symbols	for	both	known	and	unknown	numbers	and	operations	emerged	around	this	time,	paving	the	way	for	algebra’s
meteoric	rise	in	popularity	throughout	the	Renaissance	and	beyond.Symbolic	Algebra’s	Early	Beginnings	in	the	RenaissanceThe	usage	of	symbols	really	took	off	during	the	Renaissance,	which	saw	a	revival	of	scientific	and	mathematical	investigation.	European	scientists	like	François	Viète,	a	French	mathematician	widely	regarded	as	the	forefather	of
modern	algebraic	notation,	led	a	revolution	in	the	15th	and	16th	centuries	that	saw	the	increasing	introduction	of	letters	into	mathematical	discourse.The	Rise	of	Literal	Notation:	François	VièteImportant	progress	toward	the	systematic	use	of	letters	in	mathematics	was	achieved	by	François	Viète	in	the	late	16th	century.	Viète	proposed	a	system	in
which	vowels	indicated	gaps	in	knowledge	and	consonants	indicated	certainties.	This	notational	technique	significantly	paved	the	path	for	the	advancement	of	algebra	by	making	it	easier	to	describe	and	solve	equations.Cartesian	coordinates,	invented	by	René	Descartes.René	Descartes,	a	famous	French	mathematician	and	philosopher,	introduced	a
breakthrough	idea	known	as	the	Cartesian	coordinate	system	in	the	17th	century.	This	system,	which	combined	algebra	and	geometry,	expanded	the	role	of	letters	in	mathematics	by	using	them	to	stand	in	for	coordinates	and	constants.Improvements	in	Precision	and	Uniformity	During	the	Enlightenment	EraThe	refinement	and	standardization	of	the
use	of	letters	in	mathematics	occurred	when	the	globe	entered	the	Age	of	Enlightenment.	The	development	of	calculus	owes	much	to	the	work	of	Isaac	Newton	and	Gottfried	Wilhelm	Leibniz,	who	used	the	notation	of	letters	to	represent	variables	and	constants.Euler,	the	Notational	GuruThe	Swiss	mathematician	Leonhard	Euler,	who	lived	in	the	18th
century,	became	an	influential	influence	in	the	evolution	of	mathematical	notation.	Among	the	many	notational	standards	that	Euler	created	and	made	widespread	use	of	were	the	symbols	e	for	the	natural	logarithm’s	base	and	i	for	the	imaginary	unit.	The	fabric	of	mathematical	notation	bears	the	indelible	imprint	of	his	many	contributions.	We’ve	all
been	there	before.	You’re	sitting	in	math	class	staring	at	an	equation	that	is	filled	with	not	only	numbers	(which	are	to	be	expected	in	a	math	equation),	but	freaking	letters	as	well	(what	gives?).	Feeling	frustrated	and	confused,	you	can’t	help	but	to	scratch	your	head	and	wonder,	“who	put	letters	in	math,	and	why?”And	now	you’re	here,	looking	to
figure	out	exactly	who	put	letters	in	math	and	why	it	is	even	necessary	in	the	first	place	(this	isn’t	English	class,	after	all).While	the	concept	of	working	with	letters	in	math	may	seem	silly,	it	is	actually	also	pretty	brilliant,	given	that	the	“invention”	of	using	letters	is	a	foundational	part	of	the	field	of	algebra.So,	who	put	letters	in	math?	The	bulk	of	the
credit	goes	to	one	man.	Are	you	ready	to	learn	his	name?What	Do	Letters	in	Math	Mean?Before	you	learn	about	the	man	who	added	letters	to	math,	it	is	important	that	you	understand	why	letters	are	used	in	math	and	what	they	actually	represent.In	math,	letters,	more	commonly	known	as	variables,	are	used	to	represent	different	values	in	various
expressions	and	equations.	You	can	think	of	variables	as	place	holders	that	represent	unknown	values	or	quantities	and	they	are	most	prominently	used	in	algebra.	Without	variables,	you	would	not	be	able	to	form	equations	or	solve	problems!	Diophantus	of	Alexandria	is	often	credited	as	the	Father	of	Algebra.	Answering	this	question	will	require	a
short	tour	through	the	history	of	math,	starting	in	Ancient	Greece.	The	first	recored	use	of	letters	in	mathematical	equations	and	expressions	is	credited	to	the	Ancient	Greek	mathematicians,	most	notably	Diophantus	of	Alexandria,	who	is	considered	the	“Father	of	Algebra.”In	his	famous	textbook	Arithmetica,	Diophantus	used	an	abbreviated	notation
system	and	symbols	to	represent	unknown	quantities	and	values.	And	while	his	work	put	the	field	of	mathematics	on	the	path	of	including	letters	in	math,	Diophantus’	system	of	using	symbols	was	very	different	from	the	algebraic	notation	that	you	are	seeing	in	your	math	classes.So,	if	it	wasn’t	Diophantus	who	added	letters	to	math,	who	was	it?Who
Put	Letters	in	Math?Answer:	François	VièteMuch	later	on,	towards	the	end	of	the	16th	century,	a	French	mathematician	named	François	Viète	first	introduced	the	concept	of	using	letters	to	represent	unknown	numbers	and	quantities	when	solving	math	equations.	Viète’s	work	truly	revolutionized	the	field	of	algebra	and	algebraic	notation.	In	his
initial	works,	he	developed	a	notation	system	where	consonants	were	used	to	represent	known	quantities	and	vowels	were	used	to	represent	unknown	quantities.	This	system	would	gradually	morph	into	the	modern	algebraic	notation	system	that	we	use	today.Now	that	you	have	your	answer,	here	are	some	fun	facts	about	this	relatively	unknown	16th
century	French	Mathematician:Viète	is	most	famous	for	being	known	as	the	first	mathematician	to	use	a	letter-based	algebraic	notation	system	for	solving	equations,	which	laid	the	foundation	for	algebra	as	we	know	it	today.In	addition	to	being	a	mathematician,	Viète	was	an	extremely	talented	codebreaker.	He	spent	time	serving	as	a	cryptanalyst
and	decoding	secret	messages	sent	by	rival	nations	for	King	Henry	IV.He	was	also	a	licensed	private	attorney	and	travelled	all	around	France	working	as	a	lawyer.	Viète	would	eventually	become	a	respected	legal	advisor	to	the	King.Viète's	famous	algebra	textbook,	Canon	Mathematicus,	was	not	published	until	fourteen	years	after	he	died.Viète	also
made	major	contributions	to	the	field	of	trigonometry.	Most	notably,	he	developed	a	formula	for	the	relationship	between	the	angles	and	sides	of	any	triangle,	which	is	still	used	in	modern	mathematics	and	is	known	as	Viète's	Formula.	Who	Added	Letters	to	Math?	16th	century	French	mathematician,	François	Viète,	is	credited	as	being	the	first	to
introduce	the	concept	of	using	letters	to	represent	unknown	quantities.	Finally,	now	that	you	know	who	added	letters	to	math,	its	important	that	you	really	understand	why	they	were	put	there	and	why	they	are	so	useful	in	algebra.The	greatest	impact	of	adding	letters	to	math	is	that	it	made	the	subject	more	universal	and	accessible.	Since	math
principles	and	theorems	are	universal,	the	use	of	letters	as	placeholders	for	specific	values	or	inputs	allowed	mathematicians	to	represent	general	mathematical	facts	which	are	applicable	to	a	wide	range	of	values.From	a	historical	perspective,	the	introduction	of	using	letters	to	represent	unknown	values	in	math	equations	was	truly	groundbreaking
and	it	changed	the	field	of	mathematics	forever.	This	revolutionary	concept	sparked	the	evolution	of	algebra	from	a	field	of	study	that	was	primarily	focused	on	calculation	to	one	of	manipulation	and	generalization—which	led	to	countless	advancements	and	breakthroughs	in	the	fields	of	science,	technology,	mathematics,	and	engineering.	Einstein’s
famous	theory	of	relativity	equation,	E=MC^2,	would	not	be	possible	if	not	for	the	use	of	letters	in	math.	Photo	by	Artturi	Jalli	on	Unsplash	For	example,	consider	Albert	Einstein’s	famous	theory	of	relativity	equation,	E=MC^2.In	this	famous	equation	involving	mostly	letters,	E	is	used	to	represent	energy,	M	is	used	to	represent	mass,	and	C	is	used	to
represent	the	speed	of	light.	In	a	nutshell,	Einstein’s	equation	states	that	mass	(M)	can	be	converted	into	energy	(E)	and	vice	versa.	The	concept	itself	is	truly	groundbreaking	and	it	would	not	be	possible	without	the	use	of	letters	in	math.As	for	being	relevant	to	algebra	students	in	the	modern	day	who	are	not	concerned	with	developing	their	own
theories	of	relativity,	it	is	important	to	know	that	letters	in	math	allow	you	to	simplify	abstract	and	complex	mathematical	situations,	making	them	much	easier	to	conceptualize	and	solve.	The	use	of	letters	in	expressions	and	equations	allows	you	to	see	patterns,	make	generalizations,	and	develop	new	problem-solving	methods	that	are	applicable	to	a
vast	array	of	scenarios	and	problems.Conclusion:	Letters	in	MathIt’s	totally	normal	to	be	surprised	and	confused	when	you	are	first	introduced	to	letters	symbolizing	values	in	math.	Exploring	who	is	responsible	for	adding	letters	in	math	as	well	the	why	behind	their	introduction	has	taken	you	on	a	journey	through	the	history	of	math	that	ranges	from
Ancient	Greece	to	16th	century	France	to	the	modern	day.	So,	who	put	letters	in	math?	In	terms	of	crediting	one	person,	the	award	goes	to	François	Viète	and	his	initial	use	of	letters	to	represent	quantities	in	algebraic	expressions	and	equations.	Without	this	contribution,	algebra	as	we	know	it	today	would	be	a	very	different	field	of	study.	The	history
of	math	runs	deep	and	spans	across	a	variety	of	ancient	cultures	and	civilizations,	which	leads	many	to	wonder	who	invented	math?Let’s	explore	who	gets	the	credit	and	why!	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any
purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike
—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the
material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	At	the	end	of	the	16th	century,
François	Viète	introduced	the	idea	of	representing	known	and	unknown	numbers	by	letters,	nowadays	called	variables,	and	the	idea	of	computing	with	them	as	if	they	were	numbers—in	order	to	obtain	the	result	by	a	simple	replacement.	Takedown	request			|			View	complete	answer	on	en.wikipedia.org	Who	invented	letters	in	maths?	Frangois	Viète
(Latin:	Vieta),	a	great	French	mathematician,	is	credited	with	the	invention	of	this	system,	and	is	therefore	known	as	the	"father	of	modern	algebraic	notation"	[3,	p.	268].	Takedown	request			|			View	complete	answer	on	sites.math.rutgers.edu	Why	do	they	put	letters	in	math?	The	letter	is	called	the	variable.	In	algebra,	our	goal	is	to	find	out	what
number	can	replace	the	variable	to	make	the	equation	true.	In	the	example	above,	we	know	that	3	+	7	=	10.	So	the	answer	would	be	x	=	7.	Takedown	request			|			View	complete	answer	on	ghc.edu	When	did	letters	become	part	of	maths?	In	1575	Guilielmus	Xylander	translated	the	Arithmetica	of	Diophantus	from	Greek	into	Latin	and	used	N
(numerus)	for	unknowns	in	equations	(Cajori	vol.	1,	page	380).	In	1591	Francois	Viete	(1540-1603)	was	the	first	person	to	use	letters	for	unknowns	and	constants	in	algebraic	equations.	Takedown	request			|			View	complete	answer	on	mathshistory.st-andrews.ac.uk	Who	came	up	with	letters	and	numbers?	The	original	alphabet	was	developed	by	a
Semitic	people	living	in	or	near	Egypt.	*	They	based	it	on	the	idea	developed	by	the	Egyptians,	but	used	their	own	specific	symbols.	It	was	quickly	adopted	by	their	neighbors	and	relatives	to	the	east	and	north,	the	Canaanites,	the	Hebrews,	and	the	Phoenicians.	Takedown	request			|			View	complete	answer	on	webspace.ship.edu	30	related	questions
found	Math	is	an	abbreviation	of	mathematics,	which	is	a	count	noun	in	British	English	because	there	are	different	types	of	maths	(geometry,	algebra,	calculus,	etc.)	and	a	mass	noun	that	happens	to	end	in	an	's'	in	American	English	(like	gymnastics	in	both	dialects).	Takedown	request			|			View	complete	answer	on	theguardian.com	Like	the	letter	G,	C
emerged	from	the	Phoenician	letter	gimel	(centuries	later,	gimel	became	the	third	letter	of	the	Hebrew	alphabet).	In	ancient	Rome,	as	the	Latin	alphabet	was	being	adapted	from	the	Greek	and	Etruscan	alphabets,	G	and	C	became	disambiguated	by	adding	a	bar	to	the	bottom	end	of	the	C.	Takedown	request			|			View	complete	answer	on
dictionary.com	The	vertical	value	in	a	pair	of	coordinates.	How	far	up	or	down	the	point	is.	The	Y	Coordinate	is	always	written	second	in	an	ordered	pair	of	coordinates	(x,y)	such	as	(12,5).	In	this	example,	the	value	"5"	is	the	Y	Coordinate.	Also	called	"Ordinate"	Takedown	request			|			View	complete	answer	on	mathsisfun.com	A	natural	number	is	a
number	that	occurs	commonly	and	obviously	in	nature.	As	such,	it	is	a	whole,	non-negative	number.	The	set	of	natural	numbers,	denoted	N,	can	be	defined	in	either	of	two	ways:	N	=	{0,	1,	2,	3,	...}	N	=	(1,	2,	3,	4,	...	Takedown	request			|			View	complete	answer	on	techtarget.com	Answer:	Arabic	numerals	were	written	with	straight	lines	and	no
curves.	Each	number	had	to	represent	the	amount	of	angles	contained	in	the	number.	If	you	put	a	slash	across	the	top	and	the	bottom	of	a	7	it	has	seven	angles.	Takedown	request			|			View	complete	answer	on	lbc.co.uk	The	slashed	7,	explains	Langer,	originated	in	Europe	as	a	way	to	differentiate	between	the	written	numbers	seven	and	one	--	which
includes	an	extra	stroke	at	the	top	that	can	make	it	resemble	a	steeply	pointed	7.	"The	slash	says,	'Hey,	I'm	really	a	7,"'	Langer	said.	Takedown	request			|			View	complete	answer	on	sun-sentinel.com	The	only	difference	between	math	and	maths	is	where	they're	used.	Math	is	the	preferred	term	in	the	United	States	and	Canada.	Maths	is	the	preferred
term	in	the	United	Kingdom,	Ireland,	Australia,	and	other	English-speaking	places.	Takedown	request			|			View	complete	answer	on	thesaurus.com	Mom	and	Mommy	are	old-English	words,	words	that	are	stilled	used	in	Birmingham	and	most	parts	of	the	West	Midlands.	It	is	said	that	when	people	from	the	West	Midlands	went	to	America	many	years
ago	they	took	the	spelling	with	them,	hence	Americans	use	Mom	and	Mommy.	Takedown	request			|			View	complete	answer	on	projectbritain.com	Back	to	the	Phoenicians	The	Phoenicians	lived	near	what	we	now	call	the	Middle	East.	They	invented	an	alphabet	with	22	consonants	and	no	vowels	(A,	E,	I,	O	or	U).	Vowels	only	became	part	of	the
alphabet	much	later.	Takedown	request			|			View	complete	answer	on	theconversation.com	The	first	alphabet	created	from	Egyptian	hieroglyphs	in	the	Sinai	area	was	picked	up	by	Phoenician	traders	in	the	11th	century	BC,	who	adopted	it	and	altered	it	to	suit	their	own	needs,	as	we	can	see	in	this	2,700-year-old	stone	seal.	Takedown	request			|		
View	complete	answer	on	bl.uk	The	symbol	∈	indicates	set	membership	and	means	“is	an	element	of”	so	that	the	statement	x∈A	means	that	x	is	an	element	of	the	set	A.	In	other	words,	x	is	one	of	the	objects	in	the	collection	of	(possibly	many)	objects	in	the	set	A.	Takedown	request			|			View	complete	answer	on	mathinsight.org	Origin	and	evolution	of
the	symbols	used	to	write	equations	and	formulas	For	the	book	by	Florian	Cajori,	see	A	History	of	Mathematical	Notations.	The	history	of	mathematical	notation[1]	covers	the	introduction,	development,	and	cultural	diffusion	of	mathematical	symbols	and	the	conflicts	between	notational	methods	that	arise	during	a	notation's	move	to	popularity	or
obsolescence.	Mathematical	notation[2]	comprises	the	symbols	used	to	write	mathematical	equations	and	formulas.	Notation	generally	implies	a	set	of	well-defined	representations	of	quantities	and	symbols	operators.[3]	The	history	includes	Hindu–Arabic	numerals,	letters	from	the	Roman,	Greek,	Hebrew,	and	German	alphabets,	and	a	variety	of
symbols	invented	by	mathematicians	over	the	past	several	centuries.	The	historical	development	of	mathematical	notation	can	be	divided	into	three	stages:[4][5]	Rhetorical	stage—where	calculations	are	performed	by	words	and	tallies,	and	no	symbols	are	used.[6]	Syncopated	stage—where	frequently-used	operations	and	quantities	are	represented	by
symbolic	syntactical	abbreviations,	such	as	letters	or	numerals.	During	antiquity	and	the	medieval	periods,	bursts	of	mathematical	creativity	were	often	followed	by	centuries	of	stagnation.	As	the	early	modern	age	opened	and	the	worldwide	spread	of	knowledge	began,	written	examples	of	mathematical	developments	came	to	light.	Symbolic	stage—
where	comprehensive	systems	of	notation	supersede	rhetoric.	The	increasing	pace	of	new	mathematical	developments,	interacting	with	new	scientific	discoveries,	led	to	a	robust	and	complete	usage	of	symbols.	This	began	with	mathematicians	of	medieval	India	and	mid-16th	century	Europe,[7]	and	continues	through	the	present	day.	The	more
general	area	of	study	known	as	the	history	of	mathematics	primarily	investigates	the	origins	of	discoveries	in	mathematics.	The	specific	focus	of	this	article	is	the	investigation	of	mathematical	methods	and	notations	of	the	past.	See	also:	Measurement	Many	areas	of	mathematics	began	with	the	study	of	real	world	problems,	before	the	underlying
rules	and	concepts	were	identified	and	defined	as	abstract	structures.	For	example,	geometry	has	its	origins	in	the	calculation	of	distances	and	areas	in	the	real	world;	algebra	started	with	methods	of	solving	problems	in	arithmetic.	The	earliest	mathematical	notations	emerged	from	these	problems.	There	can	be	no	doubt	that	most	early	peoples	who
left	records	knew	something	of	numeration	and	mechanics	and	that	a	few	were	also	acquainted	with	the	elements	of	land-surveying.	In	particular,	the	ancient	Egyptians	paid	attention	to	geometry	and	numbers,	and	the	ancient	Phoenicians	performed	practical	arithmetic,	book-keeping,	navigation,	and	land-surveying.	The	results	attained	by	these
people	seem	to	have	been	accessible	(under	certain	conditions)	to	travelers,	facilitating	dispersal	of	the	methods.	It	is	probable	that	the	knowledge	of	the	Egyptians	and	Phoenicians	was	largely	the	result	of	observation	and	measurement,	and	represented	the	accumulated	experience	of	many	ages.	Subsequent	studies	of	mathematics	by	the	Greeks
were	largely	indebted	to	these	previous	investigations.	See	also:	Ancient	history,	History	of	writing	ancient	numbers,	and	History	of	science	in	early	cultures	Babylonian	tablet	(c.	1800–1600	BCE),	showing	an	approximation	of	√2	(1	24	51	10	in	sexagesimal)	in	the	context	of	the	Pythagorean	theorem	for	an	isosceles	triangle.	Written	mathematics
began	with	numbers	expressed	as	tally	marks,	with	each	tally	representing	a	single	unit.	Numerical	symbols	consisted	probably	of	strokes	or	notches	cut	in	wood	or	stone,	which	were	intelligible	across	cultures.	For	example,	one	notch	in	a	bone	represented	one	animal,	person,	or	object.	Numerical	notation's	distinctive	feature—symbols	having	both
local	and	intrinsic	values—implies	a	state	of	civilization	at	the	period	of	its	invention.	The	earliest	evidence	of	written	mathematics	dates	back	to	the	ancient	Sumerians	and	the	system	of	metrology	from	3000	BC.	From	around	2500	BC	onwards,	the	Sumerians	wrote	multiplication	tables	on	clay	tablets	and	dealt	with	geometrical	exercises	and	division
problems.	The	earliest	traces	of	Babylonian	numerals	also	date	back	to	this	period.[8]	Babylonian	mathematics	has	been	reconstructed	from	more	than	400	clay	tablets	unearthed	since	the	1850s.[9]	Written	in	cuneiform,	these	tablets	were	inscribed	whilst	the	clay	was	soft	and	then	baked	hard	in	an	oven	or	by	the	heat	of	the	sun.	Some	of	these
appear	to	be	graded	homework.[citation	needed]	The	majority	of	Mesopotamian	clay	tablets	date	from	1800	to	1600	BC,	and	cover	topics	which	include	fractions,	algebra,	quadratic	and	cubic	equations,	and	the	calculation	of	regular	numbers,	reciprocals,	and	pairs.[10]	The	tablets	also	include	multiplication	tables	and	methods	for	solving	linear	and
quadratic	equations.	The	Babylonian	tablet	YBC	7289	gives	an	approximation	of	√2	that	is	accurate	to	an	equivalent	of	six	decimal	places.	Babylonian	mathematics	were	written	using	a	sexagesimal	(base-60)	numeral	system.	From	this	derives	the	modern-day	usage	of	60	seconds	in	a	minute,	60	minutes	in	an	hour,	and	360	(60	×	6)	degrees	in	a	circle,
as	well	as	the	use	of	minutes	and	seconds	of	arc	to	denote	fractions	of	a	degree.	Babylonian	advances	in	mathematics	were	facilitated	by	the	fact	that	60	has	many	divisors:	the	reciprocal	of	any	integer	which	is	a	multiple	of	divisors	of	60	has	a	finite	expansion	in	base	60.	(In	decimal	arithmetic,	only	reciprocals	of	multiples	of	2	and	5	have	finite
decimal	expansions.)	Also,	unlike	the	Egyptians,	Greeks,	and	Romans,	the	Babylonians	had	a	true	place-value	system,	where	digits	written	in	the	left	column	represented	larger	values,	much	as	in	the	decimal	system.	They	lacked,	however,	an	equivalent	of	the	decimal	point,	and	so	the	place	value	of	a	symbol	often	had	to	be	inferred	from	the	context.
Initially,	the	Mesopotamians	had	symbols	for	each	power	of	ten.[11]	Later,	they	wrote	numbers	in	almost	exactly	the	same	way	as	in	modern	times.	Instead	of	using	unique	symbols	for	each	power	of	ten,	they	wrote	only	the	coefficients	of	each	power	of	ten,	with	each	digit	separated	by	only	a	space.	By	the	time	of	Alexander	the	Great,	they	had	created
a	symbol	that	represented	zero	and	was	a	placeholder.	Rhetorical	algebra	was	first	developed	by	the	ancient	Babylonians	and	remained	dominant	up	to	the	16th	century.	In	this	system,	equations	are	written	in	full	sentences.	For	example,	the	rhetorical	form	of	x	+	1	=	2	{\displaystyle	x+1=2}	is	"The	thing	plus	one	equals	two"	or	possibly	"The	thing
plus	1	equals	2".[citation	needed]	The	ancient	Egyptians	numerated	by	hieroglyphics.[12][13]	Egyptian	mathematics	had	symbols	for	one,	ten,	one	hundred,	one	thousand,	ten	thousand,	one	hundred	thousand,	and	one	million.	Smaller	digits	were	placed	on	the	left	of	the	number,	as	they	are	in	Hindu–Arabic	numerals.	Later,	the	Egyptians	used	hieratic
instead	of	hieroglyphic	script	to	show	numbers.	Hieratic	was	more	like	cursive	and	replaced	several	groups	of	symbols	with	individual	ones.	For	example,	the	four	vertical	lines	used	to	represent	the	number	'four'	were	replaced	by	a	single	horizontal	line.	This	is	found	in	the	Rhind	Mathematical	Papyrus	(c.	2000–1800	BC)	and	the	Moscow
Mathematical	Papyrus	(c.	1890	BC).	The	system	the	Egyptians	used	was	discovered	and	modified	by	many	other	civilizations	in	the	Mediterranean.	The	Egyptians	also	had	symbols	for	basic	operations:	legs	going	forward	represented	addition,	and	legs	walking	backward	to	represent	subtraction.	The	peoples	with	whom	the	Greeks	of	Asia	Minor
(amongst	whom	notation	in	western	history	begins)	were	likely	to	have	come	into	frequent	contact	were	those	inhabiting	the	eastern	littoral	of	the	Mediterranean;	Greek	tradition	uniformly	assigned	the	special	development	of	geometry	to	the	Egyptians,	and	the	science	of	numbers	to	either	the	Egyptians	or	the	Phoenicians.	Death	of	Archimedes
(1815)	by	Thomas	Degeorge.	The	last	words	attributed	to	Archimedes	are	"Do	not	disturb	my	circles",	a	reference	to	the	circles	in	the	mathematical	drawing	that	he	was	studying	when	disturbed	by	the	Roman	soldier.	See	also:	Fundamental	theorem	of	arithmetic	and	Naive	set	theory	The	history	of	mathematics	cannot	with	certainty	be	traced	back	to
any	school	or	period	before	that	of	the	Ionian	Greeks.	Still,	the	subsequent	history	may	be	divided	into	periods,	the	distinctions	between	which	are	tolerably	well-marked.	Greek	mathematics,	which	originated	with	the	study	of	geometry,	tended	to	be	deductive	and	scientific	from	its	commencement.	Since	the	fourth	century	AD,	Pythagoras	has
commonly	been	given	credit	for	discovering	the	Pythagorean	theorem,	a	theorem	in	geometry	that	states	that	in	a	right-angled	triangle	the	area	of	the	square	on	the	hypotenuse	(the	side	opposite	the	right	angle)	is	equal	to	the	sum	of	the	areas	of	the	squares	of	the	other	two	sides.[14]	However,	this	geometric	relationship	appears	in	a	few	earlier
ancient	mathematical	texts	(albeit	not	as	a	formalized	theorem),	notably	Plimpton	322,	a	Babylonian	tablet	of	mathematics	from	around	1900	BC.	The	study	of	mathematics	as	a	subject	in	its	own	right	began	in	the	6th	century	BC	with	the	Pythagoreans,	who	coined	the	term	"mathematics"	from	the	ancient	Greek	mathema	(μάθημα),	meaning	"subject
of	instruction".[15]	Plato's	influence	was	especially	strong	in	mathematics	and	the	sciences.	He	helped	to	distinguish	between	pure	and	applied	mathematics	by	widening	the	gap	between	"arithmetic"	(now	called	number	theory)	and	"logistic"	(now	called	arithmetic).	Greek	mathematics	greatly	refined	the	methods	(especially	through	the	introduction
of	deductive	reasoning	and	mathematical	rigor	in	proofs)	and	expanded	the	subject	matter	of	mathematics.[16]	Aristotle	is	credited	with	what	later	would	be	called	the	law	of	excluded	middle.	Abstract	or	pure	mathematics[17]	deals	with	concepts	like	magnitude	and	quantity	without	regard	to	any	practical	application	or	situation,	and	includes
arithmetic	and	geometry.	In	contrast,	in	mixed	or	applied	mathematics,	mathematical	properties	and	relationships	are	applied	to	real-world	objects	to	model	laws	of	physics,	for	example	in	hydrostatics,	optics,	and	navigation.[17]	Archimedes	is	generally	considered	to	be	the	greatest	mathematician	of	antiquity	and	one	of	the	greatest	of	all	time.[18]
[19]	He	used	the	method	of	exhaustion	to	calculate	the	area	under	the	arc	of	a	parabola	with	the	summation	of	an	infinite	series,	and	gave	a	remarkably	accurate	approximation	of	pi.[20]	He	also	defined	the	spiral	bearing	his	name,	formulae	for	the	volumes	of	surfaces	of	revolution,	and	an	ingenious	system	for	expressing	very	large	numbers.
Propositions	31,	32,	and	33	in	the	ninth	book	of	Euclid's	Elements	(volume	2	of	the	manuscript,	sheets	207–208	recto.)	The	ancient	Greeks	made	steps	in	the	abstraction	of	geometry.	Euclid's	Elements	(c.	300	BC)	is	the	earliest	extant	documentation	of	the	axioms	of	plane	geometry—though	Proclus	tells	of	an	earlier	axiomatisation	by	Hippocrates	of
Chios[21]	—and	is	one	of	the	oldest	extant	Greek	mathematical	treatises.	Consisting	of	thirteen	books,	it	collects	theorems	proven	by	other	mathematicians,	supplemented	by	some	original	work.	The	document	is	a	successful	collection	of	definitions,	postulates	(axioms),	propositions	(theorems	and	constructions),	and	mathematical	proofs	of	the
propositions,	and	covers	topics	such	as	Euclidean	geometry,	geometric	algebra,	elementary	number	theory,	and	the	ancient	Greek	version	of	algebraic	systems.	The	first	theorem	given	in	the	text,	Euclid's	lemma,	captures	a	fundamental	property	of	prime	numbers.	The	text	was	ubiquitous	in	the	quadrivium	and	was	instrumental	in	the	development	of
logic,	mathematics,	and	science.	Autolycus'	On	the	Moving	Sphere	is	another	ancient	mathematical	manuscript	of	the	time.[citation	needed]	The	next	phase	of	notation	for	algebra	was	syncopated	algebra,	in	which	some	symbolism	is	used,	but	which	does	not	contain	all	of	the	characteristics	of	symbolic	algebra.	For	instance,	there	may	be	a	restriction
that	subtraction	may	be	used	only	once	within	one	side	of	an	equation,	which	is	not	the	case	with	symbolic	algebra.	Syncopated	algebraic	expression	first	appeared	in	a	serious	of	books	called	Arithmetica,	by	Diophantus	of	Alexandria	(3rd	century	AD;	many	lost),	followed	by	Brahmagupta's	Brahma	Sphuta	Siddhanta	(7th	century).	The	ancient	Greeks
employed	Attic	numeration,[22]	which	was	based	on	the	system	of	the	Egyptians	and	was	later	adapted	and	used	by	the	Romans.	Greek	numerals	one	through	four	were	written	as	vertical	lines,	as	in	the	hieroglyphics.	The	symbol	for	five	was	the	Greek	letter	Π	(pi),	representing	the	Greek	word	for	'five'	(pente).	Numbers	six	through	nine	were	written
as	a	Π	with	vertical	lines	beside	it.	Ten	was	represented	by	the	letter	Δ	(delta),	from	word	for	'ten'	(deka),	one	hundred	by	the	letter	from	the	word	for	hundred,	and	so	on.	This	system	was	'acrophonic'	since	it	was	based	on	the	first	sound	of	the	numeral.[22]	Milesian	(Ionian)	numeration	was	another	Greek	numeral	system.	It	was	constructed	by
partitioning	the	twenty-four	letters	of	the	Greek	alphabet,	plus	three	archaic	letters,	into	three	classes	of	nine	letters	each,	and	using	them	to	represent	the	units,	tens,	and	hundreds.[22]	(Jean	Baptiste	Joseph	Delambre's	Astronomie	Ancienne,	t.	ii.)	Α	(α)	Β	(β)	Г	(γ)	Δ	(δ)	Ε	(ε)	Ϝ	(ϝ)	Ζ	(ζ)	Η	(η)	θ	(θ)	Ι	(ι)	Κ	(κ)	Λ	(λ)	Μ	(μ)	Ν	(ν)	Ξ	(ξ)	Ο	(ο)	Π	(π)	Ϟ	(ϟ)	Ρ	(ρ)	Σ
(σ)	Τ	(τ)	Υ	(υ)	Φ	(φ)	Χ	(χ)	Ψ	(ψ)	Ω	(ω)	Ϡ	(ϡ)	1	2	3	4	5	6	7	8	9	10	20	30	40	50	60	70	80	90	100	200	300	400	500	600	700	800	900	This	system	appeared	in	the	third	century	BC,	before	the	letters	digamma	(Ϝ),	koppa	(Ϟ),	and	sampi	(Ϡ)	became	obsolete.	When	lowercase	letters	became	differentiated	from	uppercase	letters,	the	lowercase	letters	were	used
as	the	symbols	for	notation.	Multiples	of	one	thousand	were	written	as	the	nine	numbers	with	a	stroke	in	front	of	them:	thus,	one	thousand	was	",α",	two	thousand	was	",β",	etc.	The	letter	M	(for	μύριοι,	as	in	"myriad")	was	used	to	multiply	numbers	by	ten	thousand.	For	example,	the	number	88,888,888	would	be	written	as	M,ηωπη*ηωπη.[23]	Milesian
numeration,	though	far	less	convenient	than	modern	numerals,	was	formed	on	a	perfectly	regular	and	scientific	plan,[24]	and	could	be	used	with	tolerable	effect	as	an	instrument	of	calculation,	to	which	purpose	the	Roman	system	was	totally	inapplicable.	Greek	mathematical	reasoning	was	almost	entirely	geometric	(albeit	often	used	to	reason	about
non-geometric	subjects	such	as	number	theory),	and	hence	the	Greeks	had	no	interest	in	algebraic	symbols.	An	exception	was	the	great	algebraist	Diophantus	of	Alexandria.[25]	His	Arithmetica	was	one	of	the	texts	to	use	symbols	in	equations.	It	was	not	completely	symbolic,	but	was	much	more	so	than	previous	books.	In	it,	an	unknown	number	was
called	s;	the	square	of	s	was	Δ	y	{\displaystyle	\Delta	^{y}}	;	the	cube	was	K	y	{\displaystyle	K^{y}}	;	the	fourth	power	was	Δ	y	Δ	{\displaystyle	\Delta	^{y}\Delta	}	;	and	the	fifth	power	was	Δ	K	y	{\displaystyle	\Delta	K^{y}}	.[26]	So	for	example,	the	expression:	2	x	4	+	3	x	3	−	4	x	2	+	5	x	−	6	{\displaystyle	2x^{4}+3x^{3}-4x^{2}+5x-6}	would	be
written	as:[citation	needed]	SS2	C3	x5	M	S4	u6	Main	article:	Suzhou	numerals	See	also:	Chinese	numerals	The	numbers	0–9	in	Chinese	huama	(花碼)	numerals	The	ancient	Chinese	used	numerals	that	look	much	like	the	tally	system.[27]	Numbers	one	through	four	were	horizontal	lines.	Five	was	an	X	between	two	horizontal	lines;	it	looked	almost
exactly	the	same	as	the	Roman	numeral	for	ten.	Nowadays,	this	huama	numeral	system	is	only	used	for	displaying	prices	in	Chinese	markets	or	on	traditional	handwritten	invoices.	Mathematics	in	China	emerged	independently	by	the	11th	century	BC,[28]	but	has	much	older	roots.	The	ancient	Chinese	were	acquainted	with	astronomical	cycles,
geometrical	implements	like	the	rule,	compass,	and	plumb-bob,	and	machines	like	the	wheel	and	axle.	The	Chinese	independently	developed	very	large	and	negative	numbers,	decimals,	a	place	value	decimal	system,	a	binary	system,	algebra,	geometry,	and	trigonometry.	As	in	other	early	societies,	the	purpose	of	astronomy	was	to	perfect	the
agricultural	calendar	and	other	practical	tasks,	not	to	establish	a	formal	system;	thus,	the	duties	of	the	Chinese	Board	of	Mathematics	were	confined	to	the	annual	preparation	of	the	dates	and	predictions	of	the	almanac.	Counting	rod	numerals	Early	Chinese	mathematical	inventions	include	a	place	value	system	known	as	counting	rods[29][30]	(which
emerged	during	the	Warring	States	period),	certain	geometrical	theorems	(such	as	the	ratio	of	sides),	and	the	suanpan	(abacus)	for	performing	arithmetic	calculations.	Mathematical	results	were	expressed	in	writing.	Ancient	Chinese	mathematicians	did	not	develop	an	axiomatic	approach,	but	made	advances	in	algorithm	development	and	algebra.
Chinese	algebra	reached	its	zenith	in	the	13th	century,	when	Zhu	Shijie	invented	the	method	of	four	unknowns.[clarification	needed]	Early	China	exemplifies	how	a	civilization	may	possess	considerable	skill	in	the	applied	arts	with	only	scarce	understanding	of	the	formal	mathematics	on	which	those	arts	are	founded.	Due	to	linguistic	and	geographic
barriers,	as	well	as	content,	the	mathematics	of	ancient	China	and	the	mathematics	of	the	ancient	Mediterranean	world	are	presumed	to	have	developed	more	or	less	independently.	The	final	form	of	The	Nine	Chapters	on	the	Mathematical	Art	and	the	Book	on	Numbers	and	Computation	and	Huainanzi	are	roughly	contemporary	with	classical	Greek
mathematics.	Some	exchange	of	ideas	across	Asia	through	known	cultural	exchanges	from	at	least	Roman	times	is	likely.	Frequently,	elements	of	the	mathematics	of	early	societies	correspond	to	rudimentary	results	found	later	in	branches	of	modern	mathematics	such	as	geometry	or	number	theory.	For	example,	the	Pythagorean	theorem	was
attested	in	the	Zhoubi	Suanjing,	and	knowledge	of	Pascal's	triangle	has	also	been	shown	to	have	existed	in	China	centuries	before	Blaise	Pascal,[31]	articulated	by	mathematicians	like	the	polymath	Shen	Kuo.	The	state	of	trigonometry	advanced	during	the	Song	dynasty	(960–1279),	when	Chinese	mathematicians	had	greater	need	of	spherical
trigonometry	in	calendrical	science	and	astronomical	calculations.[32]	Shen	Kuo	used	trigonometric	functions	to	solve	mathematical	problems	of	chords	and	arcs.[32]	Shen's	work	on	arc	lengths	provided	the	basis	for	spherical	trigonometry	developed	in	the	13th	century	by	the	mathematician	and	astronomer	Guo	Shoujing.[33]	As	the	historians	L.
Gauchet	and	Joseph	Needham	state,	Guo	Shoujing	used	spherical	trigonometry	in	his	calculations	to	improve	the	calendar	system	and	Chinese	astronomy.[32][34]	Chinese	mathematics	later	incorporated	the	work	and	teaching	of	Arab	missionaries	with	knowledge	of	spherical	trigonometry	who	had	come	to	China	during	the	13th	century.	See	also:
Arabic	numerals,	Hindu–Arabic	numeral	system,	History	of	the	Hindu–Arabic	numeral	system,	and	Mathematics	in	medieval	Islam	The	Hindu–Arabic	numeral	system	and	the	rules	for	the	use	of	its	operations,	in	use	throughout	the	world	today,	likely	evolved	over	the	course	of	the	first	millennium	AD	in	India	and	was	transmitted	to	the	west	via	Islamic
mathematics.[35][36]	Islamic	mathematics	developed	and	expanded	the	mathematics	known	to	Central	Asian	civilizations,[37]	including	the	addition	of	the	decimal	point	notation	to	the	Arabic	numerals.[contradictory]	The	algebraic	notation	of	the	Indian	mathematician	Brahmagupta	was	syncopated	(that	is,	some	operations	and	quantities	had
symbolic	representations).	Addition	was	indicated	by	placing	the	numbers	side	by	side,	subtraction	by	placing	a	dot	over	the	subtrahend	(the	number	to	be	subtracted),	and	division	by	placing	the	divisor	below	the	dividend,	similar	to	our	notation	but	without	the	bar.	Multiplication,	evolution,	and	unknown	quantities	were	represented	by	abbreviations
of	appropriate	terms.[38]	A	page	from	al-Khwārizmī's	Algebra	Despite	their	name,	Arabic	numerals	have	roots	in	India.	The	reason	for	this	misnomer	is	Europeans	saw	the	numerals	used	in	an	Arabic	book,	Concerning	the	Hindu	Art	of	Reckoning,	by	Muhammed	ibn-Musa	al-Khwarizmi.	Al-Khwārizmī	wrote	several	important	books	on	the	Hindu–Arabic
numerals	and	on	methods	for	solving	equations.	His	book	On	the	Calculation	with	Hindu	Numerals	(c.	825),	along	with	the	work	of	Al-Kindi,	were	instrumental	in	spreading	Indian	mathematics	and	numerals	to	the	West.	Al-Khwarizmi	did	not	claim	the	numerals	as	Arabic,	but	over	several	Latin	translations,	the	fact	that	the	numerals	were	Indian	in
origin	was	lost.	The	word	algorithm	is	derived	from	the	Latinization	of	Al-Khwārizmī's	name,	Algoritmi,	and	the	word	algebra	from	the	title	of	one	of	his	works,	Al-Kitāb	al-mukhtaṣar	fī	hīsāb	al-ğabr	wa'l-muqābala	(The	Compendious	Book	on	Calculation	by	Completion	and	Balancing).	The	modern	Arabic	numeral	symbols	used	around	the	world	first
appeared	in	Islamic	North	Africa	in	the	10th	century.	A	distinctive	Western	Arabic	variant	of	the	Eastern	Arabic	numerals	began	to	emerge	around	the	10th	century	in	the	Maghreb	and	Al-Andalus	(sometimes	called	ghubar	numerals,	though	the	term	is	not	always	accepted),	which	are	the	direct	ancestor	of	the	modern	Arabic	numerals	used
throughout	the	world.[39]	Many	Greek	and	Arabic	texts	on	mathematics	were	then	translated	into	Latin,	which	led	to	further	development	of	mathematics	in	medieval	Europe.	In	the	12th	century,	scholars	traveled	to	Spain	and	Sicily	seeking	scientific	Arabic	texts,	including	al-Khwārizmī's	(translated	into	Latin	by	Robert	of	Chester)	and	the	complete
text	of	Euclid's	Elements	(translated	in	various	versions	by	Adelard	of	Bath,	Herman	of	Carinthia,	and	Gerard	of	Cremona).[40][41]	One	of	the	European	books	that	advocated	using	the	numerals	was	Liber	Abaci,	by	Leonardo	of	Pisa,	better	known	as	Fibonacci.	Liber	Abaci	is	better	known	for	containing	a	mathematical	problem	in	which	the	growth	of
a	rabbit	population	ends	up	being	the	Fibonacci	sequence.	Symbols	by	popular	introduction	date	Further	information:	Table	of	mathematical	symbols	by	introduction	date	See	also:	Early	modern	age,	Probability,	Statistics,	Notation	in	probability	and	statistics,	History	of	probability,	History	of	statistics,	and	Scientific	revolution	The	transition	to
symbolic	algebra,	where	only	symbols	are	used,	can	first	be	seen	in	the	work	of	Ibn	al-Banna'	al-Marrakushi	(1256–1321)	and	Abū	al-Ḥasan	ibn	ʿAlī	al-Qalaṣādī	(1412–1482).[42][43]	Al-Qalasādī	was	the	last	major	medieval	Arab	algebraist,	who	improved	on	the	algebraic	notation	earlier	used	in	the	Maghreb	by	Ibn	al-Banna.[44]	In	contrast	to	the
syncopated	notations	of	their	predecessors,	Diophantus	and	Brahmagupta,	which	lacked	symbols	for	mathematical	operations,[45]	al-Qalasadi's	algebraic	notation	was	the	first	to	have	symbols	for	these	functions	and	was	thus	"the	first	steps	toward	the	introduction	of	algebraic	symbolism".	He	represented	mathematical	symbols	using	characters	from
the	Arabic	alphabet.[44]	Early	use	of	the	plus	and	minus	signs	in	print,	by	Widmann	(1489)	The	14th	century	saw	the	development	of	new	mathematical	concepts	to	investigate	a	wide	range	of	problems.[46]	The	two	most	widely	used	arithmetic	symbols	are	addition	and	subtraction,	+	and	−.	The	plus	sign	was	used	starting	around	1351	by	Nicole
Oresme[47]	and	publicized	in	his	work	Algorismus	proportionum	(1360).[48]	It	is	thought	to	be	an	abbreviation	for	"et",	meaning	"and"	in	Latin,	in	much	the	same	way	the	ampersand	sign	also	began	as	"et".	Oresme	at	the	University	of	Paris	and	the	Italian	Giovanni	di	Casali	independently	provided	graphical	demonstrations	of	the	distance	covered	by
a	body	undergoing	uniformly	accelerated	motion,	asserting	that	the	area	under	the	line	depicting	the	constant	acceleration	and	represented	the	total	distance	traveled.[49]	The	minus	sign	was	used	in	1489	by	Johannes	Widmann	in	Mercantile	Arithmetic	or	Behende	und	hüpsche	Rechenung	auff	allen	Kauffmanschafft.[50]	Widmann	used	the	minus
symbol	with	the	plus	symbol	to	indicate	deficit	and	surplus,	respectively.[51]	In	Summa	de	arithmetica,	geometria,	proportioni	e	proportionalità,[52]	Luca	Pacioli	used	plus	and	minus	symbols	and	algebra,	though	much	of	the	work	originated	from	Piero	della	Francesca	whom	he	appropriated	and	purloined.[citation	needed]	The	radical	symbol	(√),	for
square	root,	was	introduced	by	Christoph	Rudolff	in	the	early	1500s.	Michael	Stifel's	important	work	Arithmetica	integra[53]	contained	important	innovations	in	mathematical	notation.	In	1556	Niccolò	Tartaglia	used	parentheses	for	precedence	grouping.	In	1557	Robert	Recorde	published	The	Whetstone	of	Witte,	which	introduced	the	equal	sign	(=),
as	well	as	plus	and	minus	signs,	to	the	English	reader.	In	1564	Gerolamo	Cardano	analyzed	games	of	chance	beginning	the	early	stages	of	probability	theory.	Rafael	Bombelli	published	his	L'Algebra	(1572)	in	which	he	showed	how	to	deal	with	the	imaginary	quantities	that	could	appear	in	Cardano's	formula	for	solving	cubic	equations.	Simon	Stevin's
book	De	Thiende	("The	Art	of	Tenths"),	published	in	Dutch	in	1585,	contained	a	systematic	treatment	of	decimal	notation,	which	influenced	all	later	work	on	the	real	number	system.	The	new	algebra	(1591)	of	François	Viète	introduced	the	modern	notational	manipulation	of	algebraic	expressions.	John	Napier	is	best	known	as	the	inventor	of
logarithms	(published	in	Description	of	the	Marvelous	Canon	of	Logarithms)[54]	and	made	common	the	use	of	the	decimal	point	in	arithmetic	and	mathematics.[55][56]	After	Napier,	Edmund	Gunter	created	the	logarithmic	scales	(lines,	or	rules);	William	Oughtred	used	two	such	scales	sliding	by	one	another	to	perform	direct	multiplication	and
division	and	is	credited	as	the	inventor	of	the	slide	rule	in	1622.	In	1631	Oughtred	introduced	the	multiplication	sign	(×),	his	proportionality	sign	(∷),	and	abbreviations	'sin'	and	'cos'	for	the	sine	and	cosine	functions.[57]	Albert	Girard	also	used	the	abbreviations	'sin',	'cos',	and	'tan'	for	the	trigonometric	functions	in	his	treatise.	René	Descartes	is
credited	as	the	father	of	analytical	geometry,	the	bridge	between	algebra	and	geometry,	crucial	to	the	discovery	of	infinitesimal	calculus	and	analysis.	In	the	17th	century,	Descartes	introduced	Cartesian	co-ordinates	which	allowed	the	development	of	analytic	geometry,	bringing	the	notation	of	equations	to	geometry.	Blaise	Pascal	influenced
mathematics	throughout	his	life;	for	instance,	his	Traité	du	triangle	arithmétique	("Treatise	on	the	Arithmetical	Triangle")	(1653)	described	a	convenient	tabular	presentation	for	binomial	coefficients,	now	called	Pascal's	triangle.	John	Wallis	introduced	the	infinity	symbol	(∞)	and	also	used	this	notation	for	infinitesimals,	for	example,	⁠1/∞⁠.	Johann	Rahn
introduced	the	division	sign	(÷,	an	obelus	variant	repurposed)	and	the	therefore	sign	(∴)	in	1659.	William	Jones	used	π	in	Synopsis	palmariorum	mathesios[58]	in	1706	because	it	is	the	initial	letter	of	the	Greek	word	perimetron	(περιμετρον),	which	means	perimeter	in	Greek.	This	usage	was	popularized	in	1737	by	Euler.	In	1734,	Pierre	Bouguer	used
double	horizontal	bar	below	the	inequality	sign.[59]	See	also:	Leibniz's	notation	and	Leibniz–Newton	calculus	controversy	Derivative	notationsSir	Isaac	NewtonGottfried	Wilhelm	Leibniz	The	study	of	linear	algebra	emerged	from	the	study	of	determinants,	which	were	used	to	solve	systems	of	linear	equations.	Calculus	had	two	main	systems	of
notation,	each	created	by	one	of	its	creators:	that	developed	by	Isaac	Newton	and	that	developed	by	Gottfried	Leibniz.	Leibniz's	notation	is	used	most	often	today.	Newton's	notation	was	simply	a	dot	or	dash	placed	above	the	function.	For	example,	the	derivative	of	the	function	x	would	be	written	as	x	˙	{\displaystyle	{\dot	{x}}}	.	The	second
derivative	of	x	would	be	written	as	x	¨	{\displaystyle	{\ddot	{x}}}	.	In	modern	usage,	this	notation	generally	denotes	derivatives	of	physical	quantities	with	respect	to	time,	and	is	used	frequently	in	the	science	of	mechanics.	Leibniz,	on	the	other	hand,	used	the	letter	d	as	a	prefix	to	indicate	differentiation,	and	introduced	the	notation	representing
derivatives	as	if	they	were	a	special	type	of	fraction.	For	example,	the	derivative	of	the	function	x	with	respect	to	the	variable	t	in	Leibniz's	notation	would	be	written	as	d	x	d	t	{\textstyle	{dx	\over	dt}}	.	This	notation	makes	explicit	the	variable	with	respect	to	which	the	derivative	of	the	function	is	taken.	Leibniz	also	created	the	integral	symbol	(∫).
For	example:	∫	−	N	N	f	(	x	)	d	x	{\textstyle	\int	_{-N}^{N}f(x)\,dx}	.	When	finding	areas	under	curves,	integration	is	often	illustrated	by	dividing	the	area	into	infinitely	many	tall,	thin	rectangles,	whose	areas	are	added.	Thus,	the	integral	symbol	is	an	elongated	S,	representing	the	Latin	word	summa,	meaning	"sum".	At	this	time,	letters	of	the	alphabet
were	to	be	used	as	symbols	of	quantity;	and	although	much	diversity	existed	with	respect	to	the	choice	of	letters,	there	came	to	be	several	universally	recognized	rules.[24]	Here	thus	in	the	history	of	equations	the	first	letters	of	the	alphabet	became	indicatively	known	as	coefficients,	while	the	last	letters	as	unknown	terms	(an	incerti	ordinis).	In
algebraic	geometry,	again,	a	similar	rule	was	to	be	observed:	the	last	letters	of	the	alphabet	came	to	denote	the	variable	or	current	coordinates.	Certain	letters	were	by	universal	consent	appropriated	as	symbols	for	the	frequently	occurring	numbers	(such	as	π	{\displaystyle	\pi	}	for	3.14159...	and	e	for	2.7182818...),	and	other	uses	were	to	be	avoided
as	much	as	possible.[24]	Letters,	too,	were	to	be	employed	as	symbols	of	operation,	and	with	them	other	previously	mentioned	arbitrary	operation	characters.	The	letters	d	and	elongated	S	were	to	be	appropriated	as	operative	symbols	in	differential	calculus	and	integral	calculus,	and	Δ	{\displaystyle	\Delta	}	and	Σ	{\displaystyle	\Sigma	}	in	the
calculus	of	differences.[24]	In	functional	notation,	a	letter,	as	a	symbol	of	operation,	is	combined	with	another	which	is	regarded	as	a	symbol	of	quantity.[24]	Thus,	f	(	x	)	{\displaystyle	f(x)}	denotes	the	mathematical	result	of	the	performance	of	the	operation	f	{\displaystyle	f}	upon	the	subject	x	{\displaystyle	x}	.	If	upon	this	result	the	same	operation
is	repeated,	the	new	result	would	be	expressed	by	f	[	f	(	x	)	]	{\displaystyle	f[f(x)]}	,	or	more	concisely	by	f	2	(	x	)	{\displaystyle	f^{2}(x)}	,	and	so	on.	The	quantity	x	{\displaystyle	x}	itself	regarded	as	the	result	of	the	same	operation	f	{\displaystyle	f}	upon	some	other	function;	the	proper	symbol	for	which	is,	by	analogy,	f	−	1	(	x	)	{\displaystyle
f^{-1}(x)}	.	Thus	f	{\displaystyle	f}	and	f	−	1	{\displaystyle	f^{-1}}	are	symbols	of	inverse	operations,	the	former	cancelling	the	effect	of	the	latter	on	the	subject	x	{\displaystyle	x}	.	f	(	x	)	{\displaystyle	f(x)}	and	f	−	1	(	x	)	{\displaystyle	f^{-1}(x)}	in	a	similar	manner	are	termed	inverse	functions.	Beginning	in	1718,	Thomas	Twinin	used	the	division
slash	(solidus),	deriving	it	from	the	earlier	Arabic	horizontal	fraction	bar.	Pierre-Simon,	Marquis	de	Laplace	developed	the	widely	used	Laplacian	differential	operator	(e.g.	Δ	f	(	p	)	{\displaystyle	\Delta	f(p)}	).	In	1750,	Gabriel	Cramer	developed	Cramer's	Rule	for	solving	linear	systems.	Leonhard	Euler's	signature	Leonhard	Euler	was	one	of	the	most
prolific	mathematicians	in	history,	and	also	a	prolific	inventor	of	canonical	notation.	His	contributions	include	his	use	of	e	to	represent	the	base	of	natural	logarithms.	It	is	not	known	exactly	why	e	was	chosen,	but	it	was	probably	because	the	first	four	letters	of	the	alphabet	were	already	commonly	used	to	represent	variables	and	other	constants.	Euler
consistently	used	π	{\displaystyle	\pi	}	to	represent	pi.	The	use	of	π	{\displaystyle	\pi	}	was	suggested	by	William	Jones,	who	used	it	as	shorthand	for	perimeter.	Euler	used	i	{\displaystyle	i}	to	represent	the	square	root	of	negative	one	(	−	1	{\textstyle	{\sqrt	{-1}}}	)	although	he	earlier	used	it	as	an	infinite	number.	Today,	the	symbol	created	by	John
Wallis,	∞	{\displaystyle	\infty	}	,	is	used	for	infinity,	as	in	e.g.	∑	n	=	1	∞	1	n	2	{\textstyle	\sum	_{n=1}^{\infty	}{\frac	{1}{n^{2}}}}	.	For	summation,	Euler	used	an	enlarged	form	of	the	upright	capital	Greek	letter	sigma	(Σ),	known	as	capital-sigma	notation.	This	is	defined	as:	∑	i	=	m	n	a	i	=	a	m	+	a	m	+	1	+	a	m	+	2	+	⋯	+	a	n	−	1	+	a	n	.
{\displaystyle	\sum	_{i=m}^{n}a_{i}=a_{m}+a_{m+1}+a_{m+2}+\cdots	+a_{n-1}+a_{n}.}	where	i	represents	the	index	of	summation;	ai	is	an	indexed	variable	representing	each	successive	term	in	the	series;	m	is	the	lower	bound	of	summation,	and	n	is	the	upper	bound	of	summation.	The	term	"i	=	m"	under	the	summation	symbol	means	that
the	index	i	starts	equal	to	m.	The	index,	i,	is	incremented	by	1	for	each	successive	term,	stopping	when	i	=	n.	For	functions,	Euler	used	the	notation	f	(	x	)	{\displaystyle	f(x)}	to	represent	a	function	of	x	{\displaystyle	x}	.	The	mathematician	William	Emerson[60]	developed	the	proportionality	sign	(∝).	Proportionality	is	the	ratio	of	one	quantity	to
another,	and	the	sign	is	used	to	indicate	the	ratio	between	two	variables	is	constant.[61][62]	Much	later	in	the	abstract	expressions	of	the	value	of	various	proportional	phenomena,	the	parts-per	notation	would	become	useful	as	a	set	of	pseudo-units	to	describe	small	values	of	miscellaneous	dimensionless	quantities.	Marquis	de	Condorcet,	in	1768,
advanced	the	partial	differential	sign	(∂),	known	as	the	curly	d	or	Jacobi's	delta.	The	prime	symbol	(′)	for	derivatives	was	made	by	Joseph-Louis	Lagrange.	But	in	our	opinion	truths	of	this	kind	should	be	drawn	from	notions	rather	than	from	notations.— Carl	Friedrich	Gauss,	writing	about	the	proof	of	Wilson's	theorem[63]	At	the	turn	of	the	19th	century,
Carl	Friedrich	Gauss	developed	the	identity	sign	for	congruence	relation	and,	in	quadratic	reciprocity,	the	integral	part.	Gauss	developed	functions	of	complex	variables,	functions	of	geometry,	and	functions	for	the	convergence	of	series.	He	devised	satisfactory	proofs	of	the	fundamental	theorem	of	algebra	and	the	quadratic	reciprocity	law.	Gauss
developed	the	Gaussian	elimination	method	of	solving	linear	systems,	which	was	initially	listed	as	an	advancement	in	geodesy.[64]	He	would	also	develop	the	product	sign	(	∏	{\textstyle	\textstyle	\prod	}	).	In	the	1800s,	Christian	Kramp	promoted	factorial	notation	during	his	research	in	generalized	factorial	function	which	applied	to	non-integers.[65]
Joseph	Diaz	Gergonne	introduced	the	set	inclusion	signs	(⊆,	⊇),	later	redeveloped	by	Ernst	Schröder.	Peter	Gustav	Lejeune	Dirichlet	developed	Dirichlet	L-functions	to	give	the	proof	of	Dirichlet's	theorem	on	arithmetic	progressions	and	began	analytic	number	theory.	In	1829,	Carl	Gustav	Jacob	Jacobi	published	Fundamenta	nova	theoriae	functionum
ellipticarum	with	his	elliptic	theta	functions.	Matrix	notation	would	be	more	fully	developed	by	Arthur	Cayley	in	his	three	papers,	on	subjects	which	had	been	suggested	by	reading	the	Mécanique	analytique[66]	of	Lagrange	and	some	of	the	works	of	Laplace.	Cayley	defined	matrix	multiplication	and	matrix	inverses.	Cayley	used	a	single	letter	to	denote
a	matrix,[67]	thus	treating	a	matrix	as	an	aggregate	object.	He	also	realized	the	connection	between	matrices	and	determinants,[68]	and	wrote	"There	would	be	many	things	to	say	about	this	theory	of	matrices	which	should,	it	seems	to	me,	precede	the	theory	of	determinants."[69]	William	Rowan	Hamilton	introduced	the	nabla	symbol	(	∇
{\displaystyle	abla	}	or,	later	called	del,	∇)	for	vector	differentials.[70][71]	This	was	previously	used	by	Hamilton	as	a	general-purpose	operator	sign.[72]	H	^	{\displaystyle	{\hat	{H}}}	,	H	{\displaystyle	H}	,	and	H	ˇ	{\displaystyle	{\check	{H}}}	are	used	for	the	Hamiltonian	operator	in	quantum	mechanics	and	H	{\displaystyle	{\mathcal	{H}}}	(or
ℋ	)	for	the	Hamiltonian	function	in	classical	Hamiltonian	mechanics.	In	mathematics,	Hamilton	is	perhaps	best	known	as	the	inventor	of	quaternion	notation	and	biquaternions.	James	Clerk	Maxwell	Maxwell's	most	prominent	achievement	was	to	formulate	a	set	of	equations	that	united	previously	unrelated	observations,	experiments,	and	equations	of
electricity,	magnetism,	and	optics	into	a	consistent	theory.[73]	In	1864	James	Clerk	Maxwell	reduced	all	of	the	then-current	knowledge	of	electromagnetism	into	a	linked	set	of	differential	equations	with	20	equations	in	20	variables,	contained	in	A	Dynamical	Theory	of	the	Electromagnetic	Field.[74]	(See	Maxwell's	equations.)	The	method	of
calculation	that	is	necessary	to	employ	was	given	by	Lagrange,	and	afterwards	developed,	with	some	modifications,	by	Hamilton's	equations.	It	is	usually	referred	to	as	Hamilton's	principle;	when	the	equations	in	the	original	form	are	used,	they	are	known	as	Lagrange's	equations.	In	1871	Richard	Dedekind	defined	a	field	to	be	a	set	of	real	or	complex
numbers	which	is	closed	under	the	four	arithmetic	operations.	In	1873	Maxwell	presented	A	Treatise	on	Electricity	and	Magnetism.	In	1878	William	Kingdon	Clifford	published	his	Elements	of	Dynamic.[75]	Clifford	developed	split-biquaternions	(e.g.	q	=	w	+	x	i	+	y	j	+	z	k	{\displaystyle	q=w+xi+yj+zk}	)	which	he	called	algebraic	motors.	Clifford
obviated	quaternion	study	by	separating	the	dot	product	and	cross	product	of	two	vectors	from	the	complete	quaternion	notation.	The	common	vector	notations	are	used	when	working	with	spatial	vectors	or	more	abstract	members	of	vector	spaces,	while	angle	notation	(or	phasor	notation)	is	a	notation	used	in	electronics.	Lord	Kelvin's	aetheric	atom
theory	(1860s)	led	Peter	Guthrie	Tait,	in	1885,	to	publish	a	topological	table	of	knots	with	up	to	ten	crossings	known	as	the	Tait	conjectures.	Tensor	calculus	was	developed	by	Gregorio	Ricci-Curbastro	between	1887	and	1896,	presented	in	1892	under	the	title	Absolute	differential	calculus,[76]	and	the	contemporary	usage	of	"tensor"	was	stated	by
Woldemar	Voigt	in	1898.[77]	In	1895,	Henri	Poincaré	published	Analysis	Situs.[78]	In	1897,	Charles	Proteus	Steinmetz	would	publish	Theory	and	Calculation	of	Alternating	Current	Phenomena,	with	the	assistance	of	Ernst	J.	Berg.[79]	In	1895	Giuseppe	Peano	issued	his	Formulario	mathematico,[80]	an	effort	to	digest	mathematics	into	terse	text	based
on	special	symbols.	He	would	provide	a	definition	of	a	vector	space	and	linear	map.	He	would	also	introduce	the	intersection	sign	(	∩	{\displaystyle	\cap	}	),	the	union	sign	(	∪	{\displaystyle	\cup	}	),	the	membership	sign	(∈),	and	existential	quantifier	(∃).	Peano	would	pass	to	Bertrand	Russell	his	work	in	1900	at	a	Paris	conference;	it	so	impressed
Russell	that	he	too	was	taken	with	the	drive	to	render	mathematics	more	concisely.	The	result	was	Principia	Mathematica	written	with	Alfred	North	Whitehead.	This	treatise	marks	a	watershed	in	modern	literature	where	symbol	became	dominant.	Peano's	Formulario	Mathematico,	though	less	popular	than	Russell's	work,	continued	through	five
editions.	The	fifth	appeared	in	1908	and	included	4,200	formulas	and	theorems.	Ricci-Curbastro	and	Tullio	Levi-Civita	popularized	the	tensor	index	notation	around	1900.[81]	Abstraction	Felix	Klein	Georg	Cantor	Georg	Cantor	introduced	Aleph	numbers,	so	named	because	they	use	the	aleph	symbol	(א)	with	natural	number	subscripts	to	denote
cardinality	in	infinite	sets.	For	the	ordinals	he	employed	the	Greek	letter	ω	(omega).	This	notation	is	still	in	use	today	in	ordinal	notation	of	a	finite	sequence	of	symbols	from	a	finite	alphabet	that	names	an	ordinal	number	according	to	some	scheme	which	gives	meaning	to	the	language.	After	the	turn	of	the	20th	century,	Josiah	Willard	Gibbs
introduced	into	physical	chemistry	the	middle	dot	for	dot	product	and	the	multiplication	sign	for	cross	products.	He	also	supplied	notation	for	the	scalar	and	vector	products,	which	were	introduced	in	Vector	Analysis.	Bertrand	Russell	shortly	afterward	introduced	logical	disjunction	(or)	in	1906.	Gerhard	Kowalewski	and	Cuthbert	Edmund	Cullis[82]
[83][84]	introduced	and	helped	standardized	matrices	notation,	and	parenthetical	matrix	and	box	matrix	notation,	respectively.	Albert	Einstein	(1921)	Albert	Einstein,	in	1916,	introduced	Einstein	notation,	which	summed	over	a	set	of	indexed	terms	in	a	formula,	thus	exerting	notational	brevity.	For	example,	for	indices	ranging	over	the	set	{1,	2,	3},	y
=	∑	i	=	1	3	c	i	x	i	=	c	1	x	1	+	c	2	x	2	+	c	3	x	3	{\displaystyle	y=\sum	_{i=1}^{3}c_{i}x^{i}=c_{1}x^{1}+c_{2}x^{2}+c_{3}x^{3}}	is	reduced	by	convention	to:	y	=	c	i	x	i	.	{\displaystyle	y=c_{i}x^{i}\,.}	Upper	indices	are	not	exponents	but	are	indices	of	coordinates,	coefficients,	or	basis	vectors.	In	1917	Arnold	Sommerfeld	created	the	contour
integral	sign,	and	Dimitry	Mirimanoff	proposed	the	axiom	of	regularity.	In	1919,	Theodor	Kaluza	would	solve	general	relativity	equations	using	five	dimensions,	the	results	would	have	electromagnetic	equations	emerge.[85]	This	would	be	published	in	1921	in	"Zum	Unitätsproblem	der	Physik".[86]	In	1922,	Abraham	Fraenkel	and	Thoralf	Skolem



independently	proposed	replacing	the	axiom	schema	of	specification	with	the	axiom	schema	of	replacement.	Also	in	1922,	Zermelo–Fraenkel	set	theory	was	developed.	In	1923,	Steinmetz	would	publish	Four	Lectures	on	Relativity	and	Space.	Around	1924,	Jan	Arnoldus	Schouten	developed	the	modern	notation	and	formalism	for	the	Ricci	calculus
framework	during	the	absolute	differential	calculus	applications	to	general	relativity	and	differential	geometry	in	the	early	twentieth	century.	Ricci	calculus	constitutes	the	rules	of	index	notation	and	manipulation	for	tensors	and	tensor	fields.[87][88][89][90]	In	1925,	Enrico	Fermi	described	a	system	comprising	many	identical	particles	that	obey	the
Pauli	exclusion	principle,	afterwards	developing	a	diffusion	equation	(Fermi	age	equation).	In	1926,	Oskar	Klein	develop	the	Kaluza–Klein	theory.	In	1928,	Emil	Artin	abstracted	ring	theory	with	Artinian	rings.	In	1933,	Andrey	Kolmogorov	introduces	the	Kolmogorov	axioms.	In	1937,	Bruno	de	Finetti	deduced	the	"operational	subjective"	concept.	See
also:	Category	theory,	Model	theory,	Table	of	logic	symbols,	and	Logic	alphabet	Mathematical	abstraction	began	as	a	process	of	extracting	the	underlying	essence	of	a	mathematical	concept,[91][92]	removing	any	dependence	on	real	world	objects	with	which	it	might	originally	have	been	connected,[93]	and	generalizing	it	so	that	it	has	wider
applications	or	matching	among	other	abstract	descriptions	of	equivalent	phenomena.	Two	abstract	areas	of	modern	mathematics	are	category	theory	and	model	theory.	Bertrand	Russell[94]	once	said,	"Ordinary	language	is	totally	unsuited	for	expressing	what	physics	really	asserts,	since	the	words	of	everyday	life	are	not	sufficiently	abstract.	Only
mathematics	and	mathematical	logic	can	say	as	little	as	the	physicist	means	to	say."	Though,	one	can	substitute	mathematics	for	real	world	objects,	and	wander	off	through	equation	after	equation,	and	can	build	a	concept	structure	which	has	no	relation	to	reality.[95]	Some	of	the	introduced	mathematical	logic	notation	during	this	time	included	the
set	of	symbols	used	in	Boolean	algebra.	This	was	created	by	George	Boole	in	1854.	Boole	himself	did	not	see	logic	as	a	branch	of	mathematics,	but	it	has	come	to	be	encompassed	anyway.	Symbols	found	in	Boolean	algebra	include	∧	{\displaystyle	\land	}	(and),	∨	{\displaystyle	\lor	}	(or),	and	¬	{\displaystyle	\lnot	}	(not).	With	these	symbols,	and
letters	to	represent	different	truth	values,	one	can	make	logical	statements	such	as	a	∨	¬	a	=	1	{\displaystyle	a\lor	\lnot	a=1}	,	that	is	"(a	is	true	or	a	is	not	true)	is	true",	meaning	it	is	true	that	a	is	either	true	or	not	true	(i.e.	false).	Boolean	algebra	has	many	practical	uses	as	it	is,	but	it	also	was	the	start	of	what	would	be	a	large	set	of	symbols	to	be
used	in	logic.	Most	of	these	symbols	can	be	found	in	propositional	calculus,	a	formal	system	described	as	L	=	L			(	A	,			Ω	,			Z	,			I	)	{\displaystyle	{\mathcal	{L}}={\mathcal	{L}}\	(\mathrm	{A}	,\	\Omega	,\	\mathrm	{Z}	,\	\mathrm	{I}	)}	.	A	{\displaystyle	\mathrm	{A}	}	is	the	set	of	elements,	such	as	the	a	in	the	example	with	Boolean	algebra	above.	Ω
{\displaystyle	\Omega	}	is	the	set	that	contains	the	subsets	that	contain	operations,	such	as	∨	{\displaystyle	\lor	}	or	∧	{\displaystyle	\land	}	.	Z	{\displaystyle	\mathrm	{Z}	}	contains	the	inference	rules,	which	are	the	rules	dictating	how	inferences	may	be	logically	made,	and	I	{\displaystyle	\mathrm	{I}	}	contains	the	axioms.	Predicate	logic,
originally	called	predicate	calculus,	expands	on	propositional	logic	by	the	introduction	of	variables,	usually	denoted	by	x,	y,	z,	or	other	lowercase	letters,	and	by	sentences	containing	variables,	called	predicates.	These	are	usually	denoted	by	an	uppercase	letter	followed	by	a	list	of	variables,	such	as	P(x)	or	Q(y,z).	Predicate	logic	uses	special	symbols
for	quantifiers:	∃	for	"there	exists"	and	∀	for	"for	all".	See	also:	Proof	sketch	for	Gödel's	first	incompleteness	theorem	To	every	ω-consistent	recursive	class	κ	of	formulae	there	correspond	recursive	class	signs	r,	such	that	neither	v	Gen	r	nor	Neg	(v	Gen	r)	belongs	to	Flg	(κ)	(where	v	is	the	free	variable	of	r).— Kurt	Gödel[96]	While	proving	his
incompleteness	theorems,	Kurt	Gödel	created	an	alternative	to	the	symbols	normally	used	in	logic.	He	used	Gödel	numbers—numbers	assigned	to	represent	mathematical	operations—and	variables	with	the	prime	numbers	greater	than	10.	With	Gödel	numbers,	a	logic	statement	can	be	broken	down	into	a	number	sequence.	By	taking	the	n	prime
numbers	to	the	power	of	the	Gödel	numbers	in	the	sequence,	and	then	multiplying	the	terms	together,	a	unique	final	product	is	generated.	In	this	way,	every	logic	statement	can	be	encoded	as	its	own	number.[97]	For	example,	take	the	statement	"There	exists	a	number	x	such	that	it	is	not	y".	Using	the	symbols	of	propositional	calculus,	this	would
become	(	∃	x	)	(	x	=	¬	y	)	{\displaystyle	(\exists	x)(x=\lnot	y)}	.	If	the	Gödel	numbers	replace	the	symbols,	it	becomes:	{	8	,	4	,	11	,	9	,	8	,	11	,	5	,	1	,	13	,	9	}	{\displaystyle	\{8,4,11,9,8,11,5,1,13,9\}}	.	There	are	ten	numbers,	so	the	first	ten	prime	numbers	are	used:	{	2	,	3	,	5	,	7	,	11	,	13	,	17	,	19	,	23	,	29	}	{\displaystyle	\{2,3,5,7,11,13,17,19,23,29\}}	.
Then,	each	prime	is	raised	to	the	power	of	the	corresponding	Gödel	number,	and	multiplied:	2	8	×	3	4	×	5	11	×	7	9	×	11	8	×	13	11	×	17	5	×	19	1	×	23	13	×	29	9	{\displaystyle	2^{8}\times	3^{4}\times	5^{11}\times	7^{9}\times	11^{8}\times	13^{11}\times	17^{5}\times	19^{1}\times	23^{13}\times	29^{9}}	.	The	resulting	number	is
approximately	3.096262735	×	10	78	{\displaystyle	3.096262735\times	10^{78}}	.	The	abstraction	of	notation	is	an	ongoing	process.	The	historical	development	of	many	mathematical	topics	exhibits	a	progression	from	the	concrete	to	the	abstract.	Throughout	20th	century,	various	set	notations	were	developed	for	fundamental	object	sets.	Around
1924,	David	Hilbert	and	Richard	Courant	published	Methods	of	mathematical	physics.	Partial	differential	equations.[98]	In	1926,	Oskar	Klein	and	Walter	Gordon	proposed	the	Klein–Gordon	equation	to	describe	relativistic	particles:	1	c	2	∂	2	∂	t	2	ψ	−	∇	2	ψ	+	m	2	c	2	ℏ	2	ψ	=	0.	{\displaystyle	{\frac	{1}{c^{2}}}{\frac	{\partial	^{2}}{\partial
t^{2}}}\psi	-abla	^{2}\psi	+{\frac	{m^{2}c^{2}}{\hbar	^{2}}}\psi	=0.}	The	first	formulation	of	a	quantum	theory	describing	radiation	and	matter	interaction	is	due	to	Paul	Adrien	Maurice	Dirac,	who,	during	1920,	was	first	able	to	compute	the	coefficient	of	spontaneous	emission	of	an	atom.[99]	In	1928,	the	relativistic	Dirac	equation	was
formulated	by	Dirac	to	explain	the	behavior	of	the	relativistically	moving	electron.	The	Dirac	equation	in	the	form	originally	proposed	by	Dirac	is:	(	β	m	c	2	+	∑	k	=	1	3	α	k	p	k	c	)	ψ	(	x	,	t	)	=	i	ℏ	∂	ψ	(	x	,	t	)	∂	t	{\displaystyle	\left(\beta	mc^{2}+\sum	_{k=1}^{3}\alpha	_{k}p_{k}\,c\right)\psi	(\mathbf	{x}	,t)=i\hbar	{\frac	{\partial	\psi	(\mathbf	{x}	,t)}
{\partial	t}}}	where,	ψ	=	ψ(x,	t)	is	the	wave	function	for	the	electron,	x	and	t	are	the	space	and	time	coordinates,	m	is	the	rest	mass	of	the	electron,	p	is	the	momentum	(understood	to	be	the	momentum	operator	in	the	Schrödinger	theory),	c	is	the	speed	of	light,	and	ħ	=	h/2π	is	the	reduced	Planck	constant.	Dirac	described	the	quantification	of	the
electromagnetic	field	as	an	ensemble	of	harmonic	oscillators	with	the	introduction	of	the	concept	of	creation	and	annihilation	operators	of	particles.	In	the	following	years,	with	contributions	from	Wolfgang	Pauli,	Eugene	Wigner,	Pascual	Jordan,	and	Werner	Heisenberg,	and	an	elegant	formulation	of	quantum	electrodynamics	due	to	Enrico	Fermi,
[100]	physicists	came	to	believe	that,	in	principle,	it	would	be	possible	to	perform	any	computation	for	any	physical	process	involving	photons	and	charged	particles.	In	1931,	Alexandru	Proca	developed	the	Proca	equation	(Euler–Lagrange	equation)	for	the	vector	meson	theory	of	nuclear	forces	and	the	relativistic	quantum	field	equations.	John
Archibald	Wheeler	in	1937	developed	the	S-matrix.	Studies	by	Felix	Bloch	with	Arnold	Nordsieck,[101]	and	Victor	Weisskopf,[102]	in	1937	and	1939,	revealed	that	such	computations	were	reliable	only	at	a	first	order	of	perturbation	theory,	a	problem	already	pointed	out	by	Robert	Oppenheimer.[103]	Infinities	emerged	at	higher	orders	in	the	series,
making	such	computations	meaningless	and	casting	serious	doubts	on	the	internal	consistency	of	the	theory	itself.	With	no	solution	for	this	problem	known	at	the	time,	it	appeared	that	a	fundamental	incompatibility	existed	between	special	relativity	and	quantum	mechanics.	In	the	1930s,	the	double-struck	capital	Z	(	Z	{\displaystyle	\mathbb	{Z}	}	)
for	integer	number	sets	was	created	by	Edmund	Landau.	Nicolas	Bourbaki	created	the	double-struck	capital	Q	(	Q	{\displaystyle	\mathbb	{Q}	}	)	for	rational	number	sets.	In	1935	Gerhard	Gentzen	made	universal	quantifiers.	André	Weil	and	Nicolas	Bourbaki	would	develop	the	empty	set	sign	(∅)	in	1939.	That	same	year,	Nathan	Jacobson	would	coin
the	double-struck	capital	C	(	C	{\displaystyle	\mathbb	{C}	}	)	for	complex	number	sets.	Around	the	1930s,	Voigt	notation	(so	named	to	honor	Voigt's	1898	work)	would	be	developed	for	multilinear	algebra	as	a	way	to	represent	a	symmetric	tensor	by	reducing	its	order.	Schönflies	notation	became	one	of	two	conventions	used	to	describe	point	groups
(the	other	being	Hermann–Mauguin	notation).	Also	in	this	time,	van	der	Waerden	notation[104][105]	became	popular	for	the	usage	of	two-component	spinors	(Weyl	spinors)	in	four	spacetime	dimensions.	Arend	Heyting	would	introduce	Heyting	algebra	and	Heyting	arithmetic.	The	arrow	(→)	was	developed	for	function	notation	in	1936	by	Øystein	Ore
to	denote	images	of	specific	elements	and	to	denote	Galois	connections.	Later,	in	1940,	it	took	its	present	form	(f:	X→Y)	through	the	work	of	Witold	Hurewicz.	Werner	Heisenberg,	in	1941,	proposed	the	S-matrix	theory	of	particle	interactions.	Paul	Dirac	made	fundamental	contributions	to	the	early	development	of	both	quantum	mechanics	and
quantum	electrodynamics.	Bra–ket	notation	(Dirac	notation)	is	a	standard	notation	for	describing	quantum	states,	composed	of	angle	brackets	and	vertical	bars.	It	can	also	be	used	to	denote	abstract	vectors	and	linear	functionals.	It	is	so	called	because	the	inner	product	(or	dot	product	on	a	complex	vector	space)	of	two	states	is	denoted	by	a
⟨bra|ket⟩:	⟨	ϕ	|	ψ	⟩	{\displaystyle	\langle	\phi	|\psi	\rangle	}	.	The	notation	was	introduced	in	1939	by	Paul	Dirac,[106]	though	the	notation	has	precursors	in	Grassmann's	use	of	the	notation	[φ|ψ]	for	his	inner	products	nearly	100	years	previously.[107]	Bra–ket	notation	is	widespread	in	quantum	mechanics:	almost	every	phenomenon	that	is	explained
using	quantum	mechanics—including	a	large	portion	of	modern	physics—is	usually	explained	with	the	help	of	bra–ket	notation.	The	notation	establishes	an	encoded	abstract	representation-independence,	producing	a	versatile	specific	representation	(e.g.,	x,	or	p,	or	eigenfunction	base)	without	much	ado,	or	excessive	reliance	on,	the	nature	of	the
linear	spaces	involved.	The	overlap	expression	⟨φ|ψ⟩	is	typically	interpreted	as	the	probability	amplitude	for	the	state	ψ	to	collapse	into	the	state	ϕ.	The	Feynman	slash	notation	(Dirac	slash	notation[108])	was	developed	by	Richard	Feynman	for	the	study	of	Dirac	fields	in	quantum	field	theory.	Geoffrey	Chew,	along	with	others,	would	promote	matrix
notation	for	the	strong	interaction	in	particle	physics,	and	the	associated	bootstrap	principle,	in	1960.	In	the	1960s,	set-builder	notation	was	developed	for	describing	a	set	by	stating	the	properties	that	its	members	must	satisfy.	Also	in	the	1960s,	tensors	are	abstracted	within	category	theory	by	means	of	the	concept	of	monoidal	category.	Later,	multi-
index	notation	eliminates	conventional	notions	used	in	multivariable	calculus,	partial	differential	equations,	and	the	theory	of	distributions,	by	abstracting	the	concept	of	an	integer	index	to	an	ordered	tuple	of	indices.	See	also:	Approximation	theory,	Universal	property,	Tensor	algebra,	Free	algebra,	and	Abstract	algebra	In	the	modern	mathematics	of
special	relativity,	electromagnetism,	and	wave	theory,	the	d'Alembert	operator	(	◻	{\displaystyle	\scriptstyle	\Box	}	)	is	the	Laplace	operator	of	Minkowski	space.	The	Levi-Civita	symbol	(ε),	also	known	as	the	permutation	symbol,	is	used	in	tensor	calculus.	Feynman	diagrams	are	used	in	particle	physics,	equivalent	to	the	operator-based	approach	of
Sin-Itiro	Tomonaga	and	Julian	Schwinger.	The	orbifold	notation	system,	invented	by	William	Thurston,	has	been	developed	for	representing	types	of	symmetry	groups	in	two-dimensional	spaces	of	constant	curvature.	The	tetrad	formalism	(tetrad	index	notation)	was	introduced	as	an	approach	to	general	relativity	that	replaces	the	choice	of	a
coordinate	basis	by	the	less	restrictive	choice	of	a	local	basis	for	the	tangent	bundle	(a	locally	defined	set	of	four	linearly	independent	vector	fields	called	a	tetrad).[109]	In	the	1990s,	Roger	Penrose	proposed	Penrose	graphical	notation	(tensor	diagram	notation)	as	a,	usually	handwritten,	visual	depiction	of	multilinear	functions	or	tensors.[110]
Penrose	also	introduced	abstract	index	notation.	His	usage	of	the	Einstein	summation	was	in	order	to	offset	the	inconvenience	in	describing	contractions	and	covariant	differentiation	in	modern	abstract	tensor	notation,	while	maintaining	explicit	covariance	of	the	expressions	involved.[citation	needed]	John	Conway,	prolific	mathematician	of	notation
John	Conway	furthered	various	notations,	including	the	Conway	chained	arrow	notation,	the	Conway	notation	of	knot	theory,	and	the	Conway	polyhedron	notation.	The	Coxeter	notation	system	classifies	symmetry	groups,	describing	the	angles	between	with	fundamental	reflections	of	a	Coxeter	group.	It	uses	a	bracketed	notation,	with	modifiers	to
indicate	certain	subgroups.	The	notation	is	named	after	H.	S.	M.	Coxeter;	Norman	Johnson	more	comprehensively	defined	it.	Combinatorial	LCF	notation,	devised	by	Joshua	Lederberg	and	extended	by	Harold	Scott	MacDonald	Coxeter	and	Robert	Frucht,	was	developed	for	the	representation	of	cubic	graphs	that	are	Hamiltonian.[111][112]	The	cycle
notation	is	the	convention	for	writing	down	a	permutation	in	terms	of	its	constituent	cycles.[113]	This	is	also	called	circular	notation	and	the	permutation	called	a	cyclic	or	circular	permutation.[114]	Main	articles:	History	of	computing	and	Timeline	of	computing	See	also:	Symbolic	computation,	Symbolic	dynamics,	Computational	complexity	theory,
Mathematical	markup	language,	MathML,	Basic	Linear	Algebra	Subprograms,	Numerical	linear	algebra,	List	of	numerical	libraries,	List	of	numerical-analysis	software,	DOT	language,	Lisp	(programming	language),	Object-oriented	programming,	and	Earley	algorithm	In	1931,	IBM	produces	the	IBM	601	Multiplying	Punch;	it	is	an	electromechanical
machine	that	could	read	two	numbers,	up	to	eight	digits	long,	from	a	card	and	punch	their	product	onto	the	same	card.[115]	In	1934,	Wallace	Eckert	used	a	rigged	IBM	601	Multiplying	Punch	to	automate	the	integration	of	differential	equations.[116]	In	1962,	Kenneth	E.	Iverson	developed	an	integral	part	notation,	which	became	known	as	Iverson
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