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This	article	includes	a	list	of	general	references,	but	it	lacks	sufficient	corresponding	inline	citations.	Please	help	to	improve	this	article	by	introducing	more	precise	citations.	(September	2016)	(Learn	how	and	when	to	remove	this	message)	Physical	theory	with	fields	invariant	under	the	action	of	local	"gauge"	Lie	groupsFor	a	more	accessible	and	less
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the	dynamics	of	the	system	itself,	does	not	change	under	local	transformations	according	to	certain	smooth	families	of	operations	(Lie	groups).	Formally,	the	Lagrangian	is	invariant	under	these	transformations.	The	term	"gauge"	refers	to	any	specific	mathematical	formalism	to	regulate	redundant	degrees	of	freedom	in	the	Lagrangian	of	a	physical
system.	The	transformations	between	possible	gauges,	called	gauge	transformations,	form	a	Lie	group—referred	to	as	the	symmetry	group	or	the	gauge	group	of	the	theory.	Associated	with	any	Lie	group	is	the	Lie	algebra	of	group	generators.	For	each	group	generator	there	necessarily	arises	a	corresponding	field	(usually	a	vector	field)	called	the
gauge	field.	Gauge	fields	are	included	in	the	Lagrangian	to	ensure	its	invariance	under	the	local	group	transformations	(called	gauge	invariance).	When	such	a	theory	is	quantized,	the	quanta	of	the	gauge	fields	are	called	gauge	bosons.	If	the	symmetry	group	is	non-commutative,	then	the	gauge	theory	is	referred	to	as	non-abelian	gauge	theory,	the
usual	example	being	the	Yang–Mills	theory.	Many	powerful	theories	in	physics	are	described	by	Lagrangians	that	are	invariant	under	some	symmetry	transformation	groups.	When	they	are	invariant	under	a	transformation	identically	performed	at	every	point	in	the	spacetime	in	which	the	physical	processes	occur,	they	are	said	to	have	a	global
symmetry.	Local	symmetry,	the	cornerstone	of	gauge	theories,	is	a	stronger	constraint.	In	fact,	a	global	symmetry	is	just	a	local	symmetry	whose	group's	parameters	are	fixed	in	spacetime	(the	same	way	a	constant	value	can	be	understood	as	a	function	of	a	certain	parameter,	the	output	of	which	is	always	the	same).	Gauge	theories	are	important	as
the	successful	field	theories	explaining	the	dynamics	of	elementary	particles.	Quantum	electrodynamics	is	an	abelian	gauge	theory	with	the	symmetry	group	U(1)	and	has	one	gauge	field,	the	electromagnetic	four-potential,	with	the	photon	being	the	gauge	boson.	The	Standard	Model	is	a	non-abelian	gauge	theory	with	the	symmetry	group	U(1)	×
SU(2)	×	SU(3)	and	has	a	total	of	twelve	gauge	bosons:	the	photon,	three	weak	bosons	and	eight	gluons.	Gauge	theories	are	also	important	in	explaining	gravitation	in	the	theory	of	general	relativity.	Its	case	is	somewhat	unusual	in	that	the	gauge	field	is	a	tensor,	the	Lanczos	tensor.	Theories	of	quantum	gravity,	beginning	with	gauge	gravitation
theory,	also	postulate	the	existence	of	a	gauge	boson	known	as	the	graviton.	Gauge	symmetries	can	be	viewed	as	analogues	of	the	principle	of	general	covariance	of	general	relativity	in	which	the	coordinate	system	can	be	chosen	freely	under	arbitrary	diffeomorphisms	of	spacetime.	Both	gauge	invariance	and	diffeomorphism	invariance	reflect	a
redundancy	in	the	description	of	the	system.	An	alternative	theory	of	gravitation,	gauge	theory	gravity,	replaces	the	principle	of	general	covariance	with	a	true	gauge	principle	with	new	gauge	fields.	Historically,	these	ideas	were	first	stated	in	the	context	of	classical	electromagnetism	and	later	in	general	relativity.	However,	the	modern	importance	of
gauge	symmetries	appeared	first	in	the	relativistic	quantum	mechanics	of	electrons	–	quantum	electrodynamics,	elaborated	on	below.	Today,	gauge	theories	are	useful	in	condensed	matter,	nuclear	and	high	energy	physics	among	other	subfields.	The	concept	and	the	name	of	gauge	theory	derives	from	the	work	of	Hermann	Weyl	in	1918.[1]	Weyl,	in
an	attempt	to	generalize	the	geometrical	ideas	of	general	relativity	to	include	electromagnetism,	conjectured	that	Eichinvarianz	or	invariance	under	the	change	of	scale	(or	"gauge")	might	also	be	a	local	symmetry	of	general	relativity.	After	the	development	of	quantum	mechanics,	Weyl,	Vladimir	Fock[2]	and	Fritz	London	replaced	the	simple	scale
factor	with	a	complex	quantity	and	turned	the	scale	transformation	into	a	change	of	phase,	which	is	a	U(1)	gauge	symmetry.	This	explained	the	electromagnetic	field	effect	on	the	wave	function	of	a	charged	quantum	mechanical	particle.	Weyl's	1929	paper	introduced	the	modern	concept	of	gauge	invariance[3]	subsequently	popularized	by	Wolfgang
Pauli	in	his	1941	review.[4]	In	retrospect,	James	Clerk	Maxwell's	formulation,	in	1864–65,	of	electrodynamics	in	"A	Dynamical	Theory	of	the	Electromagnetic	Field"	suggested	the	possibility	of	invariance,	when	he	stated	that	any	vector	field	whose	curl	vanishes—and	can	therefore	normally	be	written	as	a	gradient	of	a	function—could	be	added	to	the
vector	potential	without	affecting	the	magnetic	field.	Similarly	unnoticed,	David	Hilbert	had	derived	the	Einstein	field	equations	by	postulating	the	invariance	of	the	action	under	a	general	coordinate	transformation.	The	importance	of	these	symmetry	invariances	remained	unnoticed	until	Weyl's	work.	Inspired	by	Pauli's	descriptions	of	connection
between	charge	conservation	and	field	theory	driven	by	invariance,	Chen	Ning	Yang	sought	a	field	theory	for	atomic	nuclei	binding	based	on	conservation	of	nuclear	isospin.[5]: 202 	In	1954,	Yang	and	Robert	Mills	generalized	the	gauge	invariance	of	electromagnetism,	constructing	a	theory	based	on	the	action	of	the	(non-abelian)	SU(2)	symmetry
group	on	the	isospin	doublet	of	protons	and	neutrons.[6]	This	is	similar	to	the	action	of	the	U(1)	group	on	the	spinor	fields	of	quantum	electrodynamics.	The	Yang–Mills	theory	became	the	prototype	theory	to	resolve	some	of	the	confusion	in	elementary	particle	physics.	This	idea	later	found	application	in	the	quantum	field	theory	of	the	weak	force,	and
its	unification	with	electromagnetism	in	the	electroweak	theory.	Gauge	theories	became	even	more	attractive	when	it	was	realized	that	non-abelian	gauge	theories	reproduced	a	feature	called	asymptotic	freedom.	Asymptotic	freedom	was	believed	to	be	an	important	characteristic	of	strong	interactions.	This	motivated	searching	for	a	strong	force
gauge	theory.	This	theory,	now	known	as	quantum	chromodynamics,	is	a	gauge	theory	with	the	action	of	the	SU(3)	group	on	the	color	triplet	of	quarks.	The	Standard	Model	unifies	the	description	of	electromagnetism,	weak	interactions	and	strong	interactions	in	the	language	of	gauge	theory.	In	the	1970s,	Michael	Atiyah	began	studying	the
mathematics	of	solutions	to	the	classical	Yang–Mills	equations.	In	1983,	Atiyah's	student	Simon	Donaldson	built	on	this	work	to	show	that	the	differentiable	classification	of	smooth	4-manifolds	is	very	different	from	their	classification	up	to	homeomorphism.[7]	Michael	Freedman	used	Donaldson's	work	to	exhibit	exotic	R4s,	that	is,	exotic	differentiable
structures	on	Euclidean	4-dimensional	space.	This	led	to	an	increasing	interest	in	gauge	theory	for	its	own	sake,	independent	of	its	successes	in	fundamental	physics.	In	1994,	Edward	Witten	and	Nathan	Seiberg	invented	gauge-theoretic	techniques	based	on	supersymmetry	that	enabled	the	calculation	of	certain	topological	invariants[8][9]	(the
Seiberg–Witten	invariants).	These	contributions	to	mathematics	from	gauge	theory	have	led	to	a	renewed	interest	in	this	area.	The	importance	of	gauge	theories	in	physics	is	exemplified	in	the	success	of	the	mathematical	formalism	in	providing	a	unified	framework	to	describe	the	quantum	field	theories	of	electromagnetism,	the	weak	force	and	the
strong	force.	This	theory,	known	as	the	Standard	Model,	accurately	describes	experimental	predictions	regarding	three	of	the	four	fundamental	forces	of	nature,	and	is	a	gauge	theory	with	the	gauge	group	SU(3)	×	SU(2)	×	U(1).	Modern	theories	like	string	theory,	as	well	as	general	relativity,	are,	in	one	way	or	another,	gauge	theories.	See	Jackson
and	Okun[10]	for	early	history	of	gauge	and	Pickering[11]	for	more	about	the	history	of	gauge	and	quantum	field	theories.	In	physics,	the	mathematical	description	of	any	physical	situation	usually	contains	excess	degrees	of	freedom;	the	same	physical	situation	is	equally	well	described	by	many	equivalent	mathematical	configurations.	For	instance,	in
Newtonian	dynamics,	if	two	configurations	are	related	by	a	Galilean	transformation	(an	inertial	change	of	reference	frame)	they	represent	the	same	physical	situation.	These	transformations	form	a	group	of	"symmetries"	of	the	theory,	and	a	physical	situation	corresponds	not	to	an	individual	mathematical	configuration	but	to	a	class	of	configurations
related	to	one	another	by	this	symmetry	group.	This	idea	can	be	generalized	to	include	local	as	well	as	global	symmetries,	analogous	to	much	more	abstract	"changes	of	coordinates"	in	a	situation	where	there	is	no	preferred	"inertial"	coordinate	system	that	covers	the	entire	physical	system.	A	gauge	theory	is	a	mathematical	model	that	has
symmetries	of	this	kind,	together	with	a	set	of	techniques	for	making	physical	predictions	consistent	with	the	symmetries	of	the	model.	When	a	quantity	occurring	in	the	mathematical	configuration	is	not	just	a	number	but	has	some	geometrical	significance,	such	as	a	velocity	or	an	axis	of	rotation,	its	representation	as	numbers	arranged	in	a	vector	or
matrix	is	also	changed	by	a	coordinate	transformation.	For	instance,	if	one	description	of	a	pattern	of	fluid	flow	states	that	the	fluid	velocity	in	the	neighborhood	of	(x	=	1,	y	=	0)	is	1	m/s	in	the	positive	x	direction,	then	a	description	of	the	same	situation	in	which	the	coordinate	system	has	been	rotated	clockwise	by	90	degrees	states	that	the	fluid
velocity	in	the	neighborhood	of	(x	=	0,	y=	−1)	is	1	m/s	in	the	negative	y	direction.	The	coordinate	transformation	has	affected	both	the	coordinate	system	used	to	identify	the	location	of	the	measurement	and	the	basis	in	which	its	value	is	expressed.	As	long	as	this	transformation	is	performed	globally	(affecting	the	coordinate	basis	in	the	same	way	at
every	point),	the	effect	on	values	that	represent	the	rate	of	change	of	some	quantity	along	some	path	in	space	and	time	as	it	passes	through	point	P	is	the	same	as	the	effect	on	values	that	are	truly	local	to	P.	In	order	to	adequately	describe	physical	situations	in	more	complex	theories,	it	is	often	necessary	to	introduce	a	"coordinate	basis"	for	some	of
the	objects	of	the	theory	that	do	not	have	this	simple	relationship	to	the	coordinates	used	to	label	points	in	space	and	time.	(In	mathematical	terms,	the	theory	involves	a	fiber	bundle	in	which	the	fiber	at	each	point	of	the	base	space	consists	of	possible	coordinate	bases	for	use	when	describing	the	values	of	objects	at	that	point.)	In	order	to	spell	out	a
mathematical	configuration,	one	must	choose	a	particular	coordinate	basis	at	each	point	(a	local	section	of	the	fiber	bundle)	and	express	the	values	of	the	objects	of	the	theory	(usually	"fields"	in	the	physicist's	sense)	using	this	basis.	Two	such	mathematical	configurations	are	equivalent	(describe	the	same	physical	situation)	if	they	are	related	by	a
transformation	of	this	abstract	coordinate	basis	(a	change	of	local	section,	or	gauge	transformation).	In	most	gauge	theories,	the	set	of	possible	transformations	of	the	abstract	gauge	basis	at	an	individual	point	in	space	and	time	is	a	finite-dimensional	Lie	group.	The	simplest	such	group	is	U(1),	which	appears	in	the	modern	formulation	of	quantum
electrodynamics	(QED)	via	its	use	of	complex	numbers.	QED	is	generally	regarded	as	the	first,	and	simplest,	physical	gauge	theory.	The	set	of	possible	gauge	transformations	of	the	entire	configuration	of	a	given	gauge	theory	also	forms	a	group,	the	gauge	group	of	the	theory.	An	element	of	the	gauge	group	can	be	parameterized	by	a	smoothly
varying	function	from	the	points	of	spacetime	to	the	(finite-dimensional)	Lie	group,	such	that	the	value	of	the	function	and	its	derivatives	at	each	point	represents	the	action	of	the	gauge	transformation	on	the	fiber	over	that	point.	A	gauge	transformation	with	constant	parameter	at	every	point	in	space	and	time	is	analogous	to	a	rigid	rotation	of	the
geometric	coordinate	system;	it	represents	a	global	symmetry	of	the	gauge	representation.	As	in	the	case	of	a	rigid	rotation,	this	gauge	transformation	affects	expressions	that	represent	the	rate	of	change	along	a	path	of	some	gauge-dependent	quantity	in	the	same	way	as	those	that	represent	a	truly	local	quantity.	A	gauge	transformation	whose
parameter	is	not	a	constant	function	is	referred	to	as	a	local	symmetry;	its	effect	on	expressions	that	involve	a	derivative	is	qualitatively	different	from	that	on	expressions	that	do	not.	(This	is	analogous	to	a	non-inertial	change	of	reference	frame,	which	can	produce	a	Coriolis	effect.)	The	"gauge	covariant"	version	of	a	gauge	theory	accounts	for	this
effect	by	introducing	a	gauge	field	(in	mathematical	language,	an	Ehresmann	connection)	and	formulating	all	rates	of	change	in	terms	of	the	covariant	derivative	with	respect	to	this	connection.	The	gauge	field	becomes	an	essential	part	of	the	description	of	a	mathematical	configuration.	A	configuration	in	which	the	gauge	field	can	be	eliminated	by	a
gauge	transformation	has	the	property	that	its	field	strength	(in	mathematical	language,	its	curvature)	is	zero	everywhere;	a	gauge	theory	is	not	limited	to	these	configurations.	In	other	words,	the	distinguishing	characteristic	of	a	gauge	theory	is	that	the	gauge	field	does	not	merely	compensate	for	a	poor	choice	of	coordinate	system;	there	is
generally	no	gauge	transformation	that	makes	the	gauge	field	vanish.	When	analyzing	the	dynamics	of	a	gauge	theory,	the	gauge	field	must	be	treated	as	a	dynamical	variable,	similar	to	other	objects	in	the	description	of	a	physical	situation.	In	addition	to	its	interaction	with	other	objects	via	the	covariant	derivative,	the	gauge	field	typically
contributes	energy	in	the	form	of	a	"self-energy"	term.	One	can	obtain	the	equations	for	the	gauge	theory	by:	starting	from	a	naïve	ansatz	without	the	gauge	field	(in	which	the	derivatives	appear	in	a	"bare"	form);	listing	those	global	symmetries	of	the	theory	that	can	be	characterized	by	a	continuous	parameter	(generally	an	abstract	equivalent	of	a
rotation	angle);	computing	the	correction	terms	that	result	from	allowing	the	symmetry	parameter	to	vary	from	place	to	place;	and	reinterpreting	these	correction	terms	as	couplings	to	one	or	more	gauge	fields,	and	giving	these	fields	appropriate	self-energy	terms	and	dynamical	behavior.	This	is	the	sense	in	which	a	gauge	theory	"extends"	a	global
symmetry	to	a	local	symmetry,	and	closely	resembles	the	historical	development	of	the	gauge	theory	of	gravity	known	as	general	relativity.	Gauge	theories	used	to	model	the	results	of	physical	experiments	engage	in:	limiting	the	universe	of	possible	configurations	to	those	consistent	with	the	information	used	to	set	up	the	experiment,	and	then
computing	the	probability	distribution	of	the	possible	outcomes	that	the	experiment	is	designed	to	measure.	We	cannot	express	the	mathematical	descriptions	of	the	"setup	information"	and	the	"possible	measurement	outcomes",	or	the	"boundary	conditions"	of	the	experiment,	without	reference	to	a	particular	coordinate	system,	including	a	choice	of
gauge.	One	assumes	an	adequate	experiment	isolated	from	"external"	influence	that	is	itself	a	gauge-dependent	statement.	Mishandling	gauge	dependence	calculations	in	boundary	conditions	is	a	frequent	source	of	anomalies,	and	approaches	to	anomaly	avoidance	classifies	gauge	theories[clarification	needed].	The	two	gauge	theories	mentioned
above,	continuum	electrodynamics	and	general	relativity,	are	continuum	field	theories.	The	techniques	of	calculation	in	a	continuum	theory	implicitly	assume	that:	given	a	completely	fixed	choice	of	gauge,	the	boundary	conditions	of	an	individual	configuration	are	completely	described	given	a	completely	fixed	gauge	and	a	complete	set	of	boundary
conditions,	the	least	action	determines	a	unique	mathematical	configuration	and	therefore	a	unique	physical	situation	consistent	with	these	bounds	fixing	the	gauge	introduces	no	anomalies	in	the	calculation,	due	either	to	gauge	dependence	in	describing	partial	information	about	boundary	conditions	or	to	incompleteness	of	the	theory.	Determination
of	the	likelihood	of	possible	measurement	outcomes	proceed	by:	establishing	a	probability	distribution	over	all	physical	situations	determined	by	boundary	conditions	consistent	with	the	setup	information	establishing	a	probability	distribution	of	measurement	outcomes	for	each	possible	physical	situation	convolving	these	two	probability	distributions
to	get	a	distribution	of	possible	measurement	outcomes	consistent	with	the	setup	information	These	assumptions	have	enough	validity	across	a	wide	range	of	energy	scales	and	experimental	conditions	to	allow	these	theories	to	make	accurate	predictions	about	almost	all	of	the	phenomena	encountered	in	daily	life:	light,	heat,	and	electricity,	eclipses,
spaceflight,	etc.	They	fail	only	at	the	smallest	and	largest	scales	due	to	omissions	in	the	theories	themselves,	and	when	the	mathematical	techniques	themselves	break	down,	most	notably	in	the	case	of	turbulence	and	other	chaotic	phenomena.	Main	article:	Quantum	field	theory	Other	than	these	classical	continuum	field	theories,	the	most	widely
known	gauge	theories	are	quantum	field	theories,	including	quantum	electrodynamics	and	the	Standard	Model	of	elementary	particle	physics.	The	starting	point	of	a	quantum	field	theory	is	much	like	that	of	its	continuum	analog:	a	gauge-covariant	action	integral	that	characterizes	"allowable"	physical	situations	according	to	the	principle	of	least
action.	However,	continuum	and	quantum	theories	differ	significantly	in	how	they	handle	the	excess	degrees	of	freedom	represented	by	gauge	transformations.	Continuum	theories,	and	most	pedagogical	treatments	of	the	simplest	quantum	field	theories,	use	a	gauge	fixing	prescription	to	reduce	the	orbit	of	mathematical	configurations	that	represent
a	given	physical	situation	to	a	smaller	orbit	related	by	a	smaller	gauge	group	(the	global	symmetry	group,	or	perhaps	even	the	trivial	group).	More	sophisticated	quantum	field	theories,	in	particular	those	that	involve	a	non-abelian	gauge	group,	break	the	gauge	symmetry	within	the	techniques	of	perturbation	theory	by	introducing	additional	fields
(the	Faddeev–Popov	ghosts)	and	counterterms	motivated	by	anomaly	cancellation,	in	an	approach	known	as	BRST	quantization.	While	these	concerns	are	in	one	sense	highly	technical,	they	are	also	closely	related	to	the	nature	of	measurement,	the	limits	on	knowledge	of	a	physical	situation,	and	the	interactions	between	incompletely	specified
experimental	conditions	and	incompletely	understood	physical	theory.[citation	needed]	The	mathematical	techniques	that	have	been	developed	in	order	to	make	gauge	theories	tractable	have	found	many	other	applications,	from	solid-state	physics	and	crystallography	to	low-dimensional	topology.	In	electrostatics,	one	can	either	discuss	the	electric
field,	E,	or	its	corresponding	electric	potential,	V.	Knowledge	of	one	makes	it	possible	to	find	the	other,	except	that	potentials	differing	by	a	constant,	V	↦	V	+	C	{\displaystyle	V\mapsto	V+C}	,	correspond	to	the	same	electric	field.	This	is	because	the	electric	field	relates	to	changes	in	the	potential	from	one	point	in	space	to	another,	and	the	constant
C	would	cancel	out	when	subtracting	to	find	the	change	in	potential.	In	terms	of	vector	calculus,	the	electric	field	is	the	gradient	of	the	potential,	E	=	−	∇	V	{\displaystyle	\mathbf	{E}	=-abla	V}	.	Generalizing	from	static	electricity	to	electromagnetism,	we	have	a	second	potential,	the	vector	potential	A,	with	E	=	−	∇	V	−	∂	A	∂	t	B	=	∇	×	A	{\displaystyle
{\begin{aligned}\mathbf	{E}	&=-abla	V-{\frac	{\partial	\mathbf	{A}	}{\partial	t}}\\\mathbf	{B}	&=abla	\times	\mathbf	{A}	\end{aligned}}}	The	general	gauge	transformations	now	become	not	just	V	↦	V	+	C	{\displaystyle	V\mapsto	V+C}	but	A	↦	A	+	∇	f	V	↦	V	−	∂	f	∂	t	{\displaystyle	{\begin{aligned}\mathbf	{A}	&\mapsto	\mathbf	{A}	+abla
f\\V&\mapsto	V-{\frac	{\partial	f}{\partial	t}}\end{aligned}}}	where	f	is	any	twice	continuously	differentiable	function	that	depends	on	position	and	time.	The	electromagnetic	fields	remain	the	same	under	the	gauge	transformation.	The	remainder	of	this	section	requires	some	familiarity	with	classical	or	quantum	field	theory,	and	the	use	of
Lagrangians.	Definitions	in	this	section:	gauge	group,	gauge	field,	interaction	Lagrangian,	gauge	boson.	The	following	illustrates	how	local	gauge	invariance	can	be	"motivated"	heuristically	starting	from	global	symmetry	properties,	and	how	it	leads	to	an	interaction	between	originally	non-interacting	fields.	Consider	a	set	of	n	{\displaystyle	n}	non-
interacting	real	scalar	fields,	with	equal	masses	m.	This	system	is	described	by	an	action	that	is	the	sum	of	the	(usual)	action	for	each	scalar	field	φ	i	{\displaystyle	\varphi	_{i}}	S	=	∫	d	4	x	∑	i	=	1	n	[	1	2	∂	μ	φ	i	∂	μ	φ	i	−	1	2	m	2	φ	i	2	]	{\displaystyle	{\mathcal	{S}}=\int	\,\mathrm	{d}	^{4}x\sum	_{i=1}^{n}\left[{\frac	{1}{2}}\partial	_{\mu	}\varphi
_{i}\partial	^{\mu	}\varphi	_{i}-{\frac	{1}{2}}m^{2}\varphi	_{i}^{2}\right]}	The	Lagrangian	(density)	can	be	compactly	written	as			L	=	1	2	(	∂	μ	Φ	)	T	∂	μ	Φ	−	1	2	m	2	Φ	T	Φ	{\displaystyle	\	{\mathcal	{L}}={\frac	{1}{2}}(\partial	_{\mu	}\Phi	)^{\mathsf	{T}}\partial	^{\mu	}\Phi	-{\frac	{1}{2}}m^{2}\Phi	^{\mathsf	{T}}\Phi	}	by	introducing	a
vector	of	fields			Φ	T	=	(	φ	1	,	φ	2	,	…	,	φ	n	)	{\displaystyle	\	\Phi	^{\mathsf	{T}}=(\varphi	_{1},\varphi	_{2},\ldots	,\varphi	_{n})}	The	term	∂	μ	Φ	{\displaystyle	\partial	_{\mu	}\Phi	}	is	the	partial	derivative	of	Φ	{\displaystyle	\Phi	}	along	dimension	μ	{\displaystyle	\mu	}	.	It	is	now	transparent	that	the	Lagrangian	is	invariant	under	the	transformation		
Φ	↦	Φ	′	=	G	Φ	{\displaystyle	\	\Phi	\mapsto	\Phi	'=G\Phi	}	whenever	G	is	a	constant	matrix	belonging	to	the	n-by-n	orthogonal	group	O(n).	This	is	seen	to	preserve	the	Lagrangian,	since	the	derivative	of	Φ	′	{\displaystyle	\Phi	'}	transforms	identically	to	Φ	{\displaystyle	\Phi	}	and	both	quantities	appear	inside	dot	products	in	the	Lagrangian	(orthogonal
transformations	preserve	the	dot	product).			(	∂	μ	Φ	)	↦	(	∂	μ	Φ	)	′	=	G	∂	μ	Φ	{\displaystyle	\	(\partial	_{\mu	}\Phi	)\mapsto	(\partial	_{\mu	}\Phi	)'=G\partial	_{\mu	}\Phi	}	This	characterizes	the	global	symmetry	of	this	particular	Lagrangian,	and	the	symmetry	group	is	often	called	the	gauge	group;	the	mathematical	term	is	structure	group,	especially	in
the	theory	of	G-structures.	Incidentally,	Noether's	theorem	implies	that	invariance	under	this	group	of	transformations	leads	to	the	conservation	of	the	currents			J	μ	a	=	i	∂	μ	Φ	T	T	a	Φ	{\displaystyle	\	J_{\mu	}^{a}=i\partial	_{\mu	}\Phi	^{\mathsf	{T}}T^{a}\Phi	}	where	the	Ta	matrices	are	generators	of	the	SO(n)	group.	There	is	one	conserved
current	for	every	generator.	Now,	demanding	that	this	Lagrangian	should	have	local	O(n)-invariance	requires	that	the	G	matrices	(which	were	earlier	constant)	should	be	allowed	to	become	functions	of	the	spacetime	coordinates	x.	In	this	case,	the	G	matrices	do	not	"pass	through"	the	derivatives,	when	G	=	G(x),			∂	μ	(	G	Φ	)	≠	G	(	∂	μ	Φ	)	{\displaystyle
\	\partial	_{\mu	}(G\Phi	)eq	G(\partial	_{\mu	}\Phi	)}	The	failure	of	the	derivative	to	commute	with	"G"	introduces	an	additional	term	(in	keeping	with	the	product	rule),	which	spoils	the	invariance	of	the	Lagrangian.	In	order	to	rectify	this	we	define	a	new	derivative	operator	such	that	the	derivative	of	Φ	′	{\displaystyle	\Phi	'}	again	transforms
identically	with	Φ	{\displaystyle	\Phi	}			(	D	μ	Φ	)	′	=	G	D	μ	Φ	{\displaystyle	\	(D_{\mu	}\Phi	)'=GD_{\mu	}\Phi	}	This	new	"derivative"	is	called	a	(gauge)	covariant	derivative	and	takes	the	form			D	μ	=	∂	μ	−	i	g	A	μ	{\displaystyle	\	D_{\mu	}=\partial	_{\mu	}-igA_{\mu	}}	where	g	is	called	the	coupling	constant;	a	quantity	defining	the	strength	of	an
interaction.	After	a	simple	calculation	we	can	see	that	the	gauge	field	A(x)	must	transform	as	follows			A	μ	′	=	G	A	μ	G	−	1	−	i	g	(	∂	μ	G	)	G	−	1	{\displaystyle	\	A'_{\mu	}=GA_{\mu	}G^{-1}-{\frac	{i}{g}}(\partial	_{\mu	}G)G^{-1}}	The	gauge	field	is	an	element	of	the	Lie	algebra,	and	can	therefore	be	expanded	as			A	μ	=	∑	a	A	μ	a	T	a	{\displaystyle	\
A_{\mu	}=\sum	_{a}A_{\mu	}^{a}T^{a}}	There	are	therefore	as	many	gauge	fields	as	there	are	generators	of	the	Lie	algebra.	Finally,	we	now	have	a	locally	gauge	invariant	Lagrangian			L	l	o	c	=	1	2	(	D	μ	Φ	)	T	D	μ	Φ	−	1	2	m	2	Φ	T	Φ	{\displaystyle	\	{\mathcal	{L}}_{\mathrm	{loc}	}={\frac	{1}{2}}(D_{\mu	}\Phi	)^{\mathsf	{T}}D^{\mu	}\Phi	-
{\frac	{1}{2}}m^{2}\Phi	^{\mathsf	{T}}\Phi	}	Pauli	uses	the	term	gauge	transformation	of	the	first	type	to	mean	the	transformation	of	Φ	{\displaystyle	\Phi	}	,	while	the	compensating	transformation	in	A	{\displaystyle	A}	is	called	a	gauge	transformation	of	the	second	type.	Feynman	diagram	of	scalar	bosons	interacting	via	a	gauge	boson	The
difference	between	this	Lagrangian	and	the	original	globally	gauge-invariant	Lagrangian	is	seen	to	be	the	interaction	Lagrangian			L	i	n	t	=	i	g	2	Φ	T	A	μ	T	∂	μ	Φ	+	i	g	2	(	∂	μ	Φ	)	T	A	μ	Φ	−	g	2	2	(	A	μ	Φ	)	T	A	μ	Φ	{\displaystyle	\	{\mathcal	{L}}_{\mathrm	{int}	}=i{\frac	{g}{2}}\Phi	^{\mathsf	{T}}A_{\mu	}^{\mathsf	{T}}\partial	^{\mu	}\Phi	+i{\frac
{g}{2}}(\partial	_{\mu	}\Phi	)^{\mathsf	{T}}A^{\mu	}\Phi	-{\frac	{g^{2}}{2}}(A_{\mu	}\Phi	)^{\mathsf	{T}}A^{\mu	}\Phi	}	This	term	introduces	interactions	between	the	n	scalar	fields	just	as	a	consequence	of	the	demand	for	local	gauge	invariance.	However,	to	make	this	interaction	physical	and	not	completely	arbitrary,	the	mediator	A(x)
needs	to	propagate	in	space.	That	is	dealt	with	in	the	next	section	by	adding	yet	another	term,	L	g	f	{\displaystyle	{\mathcal	{L}}_{\mathrm	{gf}	}}	,	to	the	Lagrangian.	In	the	quantized	version	of	the	obtained	classical	field	theory,	the	quanta	of	the	gauge	field	A(x)	are	called	gauge	bosons.	The	interpretation	of	the	interaction	Lagrangian	in	quantum
field	theory	is	of	scalar	bosons	interacting	by	the	exchange	of	these	gauge	bosons.	Main	article:	Yang–Mills	theory	The	picture	of	a	classical	gauge	theory	developed	in	the	previous	section	is	almost	complete,	except	for	the	fact	that	to	define	the	covariant	derivatives	D,	one	needs	to	know	the	value	of	the	gauge	field	A	(	x	)	{\displaystyle	A(x)}	at	all
spacetime	points.	Instead	of	manually	specifying	the	values	of	this	field,	it	can	be	given	as	the	solution	to	a	field	equation.	Further	requiring	that	the	Lagrangian	that	generates	this	field	equation	is	locally	gauge	invariant	as	well,	one	possible	form	for	the	gauge	field	Lagrangian	is	L	gf	=	−	1	2	tr		(	F	μ	ν	F	μ	ν	)	=	−	1	4	F	a	μ	ν	F	μ	ν	a	{\displaystyle
{\mathcal	{L}}_{\text{gf}}=-{\frac	{1}{2}}\operatorname	{tr}	\left(F^{\mu	u	}F_{\mu	u	}\right)=-{\frac	{1}{4}}F^{a\mu	u	}F_{\mu	u	}^{a}}	where	the	F	μ	ν	a	{\displaystyle	F_{\mu	u	}^{a}}	are	obtained	from	potentials	A	μ	a	{\displaystyle	A_{\mu	}^{a}}	,	being	the	components	of	A	(	x	)	{\displaystyle	A(x)}	,	by	F	μ	ν	a	=	∂	μ	A	ν	a	−	∂	ν	A	μ	a
+	g	∑	b	,	c	f	a	b	c	A	μ	b	A	ν	c	{\displaystyle	F_{\mu	u	}^{a}=\partial	_{\mu	}A_{u	}^{a}-\partial	_{u	}A_{\mu	}^{a}+g\sum	_{b,c}f^{abc}A_{\mu	}^{b}A_{u	}^{c}}	and	the	f	a	b	c	{\displaystyle	f^{abc}}	are	the	structure	constants	of	the	Lie	algebra	of	the	generators	of	the	gauge	group.	This	formulation	of	the	Lagrangian	is	called	a	Yang–Mills
action.	Other	gauge	invariant	actions	also	exist	(e.g.,	nonlinear	electrodynamics,	Born–Infeld	action,	Chern–Simons	model,	theta	term,	etc.).	In	this	Lagrangian	term	there	is	no	field	whose	transformation	counterweighs	the	one	of	A	{\displaystyle	A}	.	Invariance	of	this	term	under	gauge	transformations	is	a	particular	case	of	a	priori	classical
(geometrical)	symmetry.	This	symmetry	must	be	restricted	in	order	to	perform	quantization,	the	procedure	being	denominated	gauge	fixing,	but	even	after	restriction,	gauge	transformations	may	be	possible.[12]	The	complete	Lagrangian	for	the	gauge	theory	is	now	L	=	L	loc	+	L	gf	=	L	global	+	L	int	+	L	gf	{\displaystyle	{\mathcal	{L}}={\mathcal
{L}}_{\text{loc}}+{\mathcal	{L}}_{\text{gf}}={\mathcal	{L}}_{\text{global}}+{\mathcal	{L}}_{\text{int}}+{\mathcal	{L}}_{\text{gf}}}	As	a	simple	application	of	the	formalism	developed	in	the	previous	sections,	consider	the	case	of	electrodynamics,	with	only	the	electron	field.	The	bare-bones	action	that	generates	the	electron	field's	Dirac
equation	is	S	=	∫	ψ	¯	(	i	ℏ	c	γ	μ	∂	μ	−	m	c	2	)	ψ	d	4	x	{\displaystyle	{\mathcal	{S}}=\int	{\bar	{\psi	}}\left(i\hbar	c\,\gamma	^{\mu	}\partial	_{\mu	}-mc^{2}\right)\psi	\,\mathrm	{d}	^{4}x}	The	global	symmetry	for	this	system	is	ψ	↦	e	i	θ	ψ	{\displaystyle	\psi	\mapsto	e^{i\theta	}\psi	}	The	gauge	group	here	is	U(1),	just	rotations	of	the	phase	angle	of
the	field,	with	the	particular	rotation	determined	by	the	constant	θ.	"Localising"	this	symmetry	implies	the	replacement	of	θ	by	θ(x).	An	appropriate	covariant	derivative	is	then	D	μ	=	∂	μ	−	i	e	ℏ	A	μ	{\displaystyle	D_{\mu	}=\partial	_{\mu	}-i{\frac	{e}{\hbar	}}A_{\mu	}}	Identifying	the	"charge"	e	(not	to	be	confused	with	the	mathematical	constant	e
in	the	symmetry	description)	with	the	usual	electric	charge	(this	is	the	origin	of	the	usage	of	the	term	in	gauge	theories),	and	the	gauge	field	A(x)	with	the	four-vector	potential	of	the	electromagnetic	field	results	in	an	interaction	Lagrangian	L	int	=	e	ℏ	ψ	¯	(	x	)	γ	μ	ψ	(	x	)	A	μ	(	x	)	=	J	μ	(	x	)	A	μ	(	x	)	{\displaystyle	{\mathcal	{L}}_{\text{int}}={\frac	{e}
{\hbar	}}{\bar	{\psi	}}(x)\gamma	^{\mu	}\psi	(x)A_{\mu	}(x)=J^{\mu	}(x)A_{\mu	}(x)}	where	J	μ	(	x	)	=	e	ℏ	ψ	¯	(	x	)	γ	μ	ψ	(	x	)	{\displaystyle	J^{\mu	}(x)={\frac	{e}{\hbar	}}{\bar	{\psi	}}(x)\gamma	^{\mu	}\psi	(x)}	is	the	electric	current	four	vector	in	the	Dirac	field.	The	gauge	principle	is	therefore	seen	to	naturally	introduce	the	so-called	minimal
coupling	of	the	electromagnetic	field	to	the	electron	field.	Adding	a	Lagrangian	for	the	gauge	field	A	μ	(	x	)	{\displaystyle	A_{\mu	}(x)}	in	terms	of	the	field	strength	tensor	exactly	as	in	electrodynamics,	one	obtains	the	Lagrangian	used	as	the	starting	point	in	quantum	electrodynamics.	L	QED	=	ψ	¯	(	i	ℏ	c	γ	μ	D	μ	−	m	c	2	)	ψ	−	1	4	μ	0	F	μ	ν	F	μ	ν
{\displaystyle	{\mathcal	{L}}_{\text{QED}}={\bar	{\psi	}}\left(i\hbar	c\,\gamma	^{\mu	}D_{\mu	}-mc^{2}\right)\psi	-{\frac	{1}{4\mu	_{0}}}F_{\mu	u	}F^{\mu	u	}}	See	also:	Dirac	equation,	Maxwell's	equations,	and	Quantum	electrodynamics	See	also:	Gauge	theory	(mathematics)	Gauge	theories	are	usually	discussed	in	the	language	of
differential	geometry.	Mathematically,	a	gauge	is	just	a	choice	of	a	(local)	section	of	some	principal	bundle.	A	gauge	transformation	is	just	a	transformation	between	two	such	sections.	Although	gauge	theory	is	dominated	by	the	study	of	connections	(primarily	because	it's	mainly	studied	by	high-energy	physicists),	the	idea	of	a	connection	is	not	central
to	gauge	theory	in	general.	In	fact,	a	result	in	general	gauge	theory	shows	that	affine	representations	(i.e.,	affine	modules)	of	the	gauge	transformations	can	be	classified	as	sections	of	a	jet	bundle	satisfying	certain	properties.	There	are	representations	that	transform	covariantly	pointwise	(called	by	physicists	gauge	transformations	of	the	first	kind),
representations	that	transform	as	a	connection	form	(called	by	physicists	gauge	transformations	of	the	second	kind,	an	affine	representation)—and	other	more	general	representations,	such	as	the	B	field	in	BF	theory.	There	are	more	general	nonlinear	representations	(realizations),	but	these	are	extremely	complicated.	Still,	nonlinear	sigma	models
transform	nonlinearly,	so	there	are	applications.	If	there	is	a	principal	bundle	P	whose	base	space	is	space	or	spacetime	and	structure	group	is	a	Lie	group,	then	the	sections	of	P	form	a	principal	homogeneous	space	of	the	group	of	gauge	transformations.	Connections	(gauge	connection)	define	this	principal	bundle,	yielding	a	covariant	derivative	∇	in
each	associated	vector	bundle.	If	a	local	frame	is	chosen	(a	local	basis	of	sections),	then	this	covariant	derivative	is	represented	by	the	connection	form	A,	a	Lie	algebra-valued	1-form,	which	is	called	the	gauge	potential	in	physics.	This	is	evidently	not	an	intrinsic	but	a	frame-dependent	quantity.	The	curvature	form	F,	a	Lie	algebra-valued	2-form	that
is	an	intrinsic	quantity,	is	constructed	from	a	connection	form	by	F	=	d	A	+	A	∧	A	{\displaystyle	\mathbf	{F}	=\mathrm	{d}	\mathbf	{A}	+\mathbf	{A}	\wedge	\mathbf	{A}	}	where	d	stands	for	the	exterior	derivative	and	∧	{\displaystyle	\wedge	}	stands	for	the	wedge	product.	(	A	{\displaystyle	\mathbf	{A}	}	is	an	element	of	the	vector	space	spanned
by	the	generators	T	a	{\displaystyle	T^{a}}	,	and	so	the	components	of	A	{\displaystyle	\mathbf	{A}	}	do	not	commute	with	one	another.	Hence	the	wedge	product	A	∧	A	{\displaystyle	\mathbf	{A}	\wedge	\mathbf	{A}	}	does	not	vanish.)	Infinitesimal	gauge	transformations	form	a	Lie	algebra,	which	is	characterized	by	a	smooth	Lie-algebra-valued
scalar,	ε.	Under	such	an	infinitesimal	gauge	transformation,	δ	ε	A	=	[	ε	,	A	]	−	d	ε	{\displaystyle	\delta	_{\varepsilon	}\mathbf	{A}	=[\varepsilon	,\mathbf	{A}	]-\mathrm	{d}	\varepsilon	}	where	[	⋅	,	⋅	]	{\displaystyle	[\cdot	,\cdot	]}	is	the	Lie	bracket.	One	nice	thing	is	that	if	δ	ε	X	=	ε	X	{\displaystyle	\delta	_{\varepsilon	}X=\varepsilon	X}	,	then	δ	ε	D	X
=	ε	D	X	{\displaystyle	\delta	_{\varepsilon	}DX=\varepsilon	DX}	where	D	is	the	covariant	derivative	D	X			=	d	e	f			d	X	+	A	X	{\displaystyle	DX\	{\stackrel	{\mathrm	{def}	}{=}}\	\mathrm	{d}	X+\mathbf	{A}	X}	Also,	δ	ε	F	=	[	ε	,	F	]	{\displaystyle	\delta	_{\varepsilon	}\mathbf	{F}	=[\varepsilon	,\mathbf	{F}	]}	,	which	means	F	{\displaystyle	\mathbf
{F}	}	transforms	covariantly.	Not	all	gauge	transformations	can	be	generated	by	infinitesimal	gauge	transformations	in	general.	An	example	is	when	the	base	manifold	is	a	compact	manifold	without	boundary	such	that	the	homotopy	class	of	mappings	from	that	manifold	to	the	Lie	group	is	nontrivial.	See	instanton	for	an	example.	The	Yang–Mills
action	is	now	given	by	1	4	g	2	∫	Tr		[	⋆	F	∧	F	]	{\displaystyle	{\frac	{1}{4g^{2}}}\int	\operatorname	{Tr}	[{\star	}F\wedge	F]}	where	⋆	{\displaystyle	{\star	}}	is	the	Hodge	star	operator	and	the	integral	is	defined	as	in	differential	geometry.	A	quantity	which	is	gauge-invariant	(i.e.,	invariant	under	gauge	transformations)	is	the	Wilson	loop,	which	is
defined	over	any	closed	path,	γ,	as	follows:	χ	(	ρ	)	(	P	{	e	∫	γ	A	}	)	{\displaystyle	\chi	^{(\rho	)}\left({\mathcal	{P}}\left\{e^{\int	_{\gamma	}A}\right\}\right)}	where	χ	is	the	character	of	a	complex	representation	ρ	and	P	{\displaystyle	{\mathcal	{P}}}	represents	the	path-ordered	operator.	The	formalism	of	gauge	theory	carries	over	to	a	general
setting.	For	example,	it	is	sufficient	to	ask	that	a	vector	bundle	have	a	metric	connection;	when	one	does	so,	one	finds	that	the	metric	connection	satisfies	the	Yang–Mills	equations	of	motion.	Gauge	theories	may	be	quantized	by	specialization	of	methods	which	are	applicable	to	any	quantum	field	theory.	However,	because	of	the	subtleties	imposed	by
the	gauge	constraints	(see	section	on	Mathematical	formalism,	above)	there	are	many	technical	problems	to	be	solved	which	do	not	arise	in	other	field	theories.	At	the	same	time,	the	richer	structure	of	gauge	theories	allows	simplification	of	some	computations:	for	example	Ward	identities	connect	different	renormalization	constants.	The	first	gauge
theory	quantized	was	quantum	electrodynamics	(QED).	The	first	methods	developed	for	this	involved	gauge	fixing	and	then	applying	canonical	quantization.	The	Gupta–Bleuler	method	was	also	developed	to	handle	this	problem.	Non-abelian	gauge	theories	are	now	handled	by	a	variety	of	means.	Methods	for	quantization	are	covered	in	the	article	on
quantization.	The	main	point	to	quantization	is	to	be	able	to	compute	quantum	amplitudes	for	various	processes	allowed	by	the	theory.	Technically,	they	reduce	to	the	computations	of	certain	correlation	functions	in	the	vacuum	state.	This	involves	a	renormalization	of	the	theory.	When	the	running	coupling	of	the	theory	is	small	enough,	then	all
required	quantities	may	be	computed	in	perturbation	theory.	Quantization	schemes	intended	to	simplify	such	computations	(such	as	canonical	quantization)	may	be	called	perturbative	quantization	schemes.	At	present	some	of	these	methods	lead	to	the	most	precise	experimental	tests	of	gauge	theories.	However,	in	most	gauge	theories,	there	are
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