
	

https://gugawar.maxudijuz.com/826703705421662476120005783335362015096143?vobibukujubotafadipanolidapotenopuvodebusezikilud=dotilibuxufupifisixagimizalugosuvetuzezawonugemazibupexerikosutaxuritokagukovepupawepinodebonunegezidutubojawesesasuzaxugekutigobozevapulazumewewezoridaparidebewarozenorasubebitesazaluferemadijojolajuzusowitaxu&utm_kwd=wpf+textblock+datetime+string+format&vitunumarisoziwepitixekigolupu=zapatafuwokojonugaxagigimidovilipafizogoxonisalibuserexizadipaziseriwevunipokazetataguvekifododezotarinopowukitimokexunoxafotukukinujajefopavesumo






















Data	binding:	The	DataContext	property	is	the	default	source	of	your	bindings,	unless	you	specifically	declare	another	source,	like	we	did	in	the	previous	chapter	with	the	ElementName	property.	It's	defined	on	the	FrameworkElement	class,	which	most	UI	controls,	including	the	WPF	Window,	inherits	from.	Simply	put,	it	allows	you	to	specify	a	basis
for	your	bindingsThere's	no	default	source	for	the	DataContext	property	(it's	simply	null	from	the	start),	but	since	a	DataContext	is	inherited	down	through	the	control	hierarchy,	you	can	set	a	DataContext	for	the	Window	itself	and	then	use	it	throughout	all	of	the	child	controls.	Let's	try	illustrating	that	with	a	simple	example:	using	System;using
System.Windows;namespace	WpfTutorialSamples.DataBinding{public	partial	class	DataContextSample	:	Window{public	DataContextSample(){InitializeComponent();this.DataContext	=	this;}}}The	Code-behind	for	this	example	only	adds	one	line	of	interesting	code:	After	the	standard	InitalizeComponent()	call,	we	assign	the	"this"	reference	to	the
DataContext,	which	basically	just	tells	the	Window	that	we	want	itself	to	be	the	data	context.	In	the	XAML,	we	use	this	fact	to	bind	to	several	of	the	Window	properties,	including	Title,	Width	and	Height.	Since	the	window	has	a	DataContext,	which	is	passed	down	to	the	child	controls,	we	don't	have	to	define	a	source	on	each	of	the	bindings	-	we	just
use	the	values	as	if	they	were	globally	available.Try	running	the	example	and	resize	the	window	-	you	will	see	that	the	dimension	changes	are	immediately	reflected	in	the	textboxes.	You	can	also	try	writing	a	different	title	in	the	first	textbox,	but	you	might	be	surprised	to	see	that	this	change	is	not	reflected	immediately.	Instead,	you	have	to	move	the
focus	to	another	control	before	the	change	is	applied.	Why?	Well,	that's	the	subject	for	the	next	chapter.SummaryUsing	the	DataContext	property	is	like	setting	the	basis	of	all	bindings	down	through	the	hierarchy	of	controls.	This	saves	you	the	hassle	of	manually	defining	a	source	for	each	binding,	and	once	you	really	start	using	data	bindings,	you
will	definitely	appreciate	the	time	and	typing	saved.However,	this	doesn't	mean	that	you	have	to	use	the	same	DataContext	for	all	controls	within	a	Window.	Since	each	control	has	its	own	DataContext	property,	you	can	easily	break	the	chain	of	inheritance	and	override	the	DataContext	with	a	new	value.	This	allows	you	to	do	stuff	like	having	a	global
DataContext	on	the	window	and	then	a	more	local	and	specific	DataContext	on	e.g.	a	panel	holding	a	separate	form	or	something	along	those	lines.	This	article	has	been	fully	translated	into	the	following	languages:	Is	your	preferred	language	not	on	the	list?	Click	here	to	help	us	translate	this	article	into	your	language!	I	have	a	TextBlock	that	is	bound
to	a	DateTime	property.	How	do	I	configure	the	format	of	the	date?	There	is	a	string	format	property	available	when	you	are	declaring	the	binding:	(You	need	to	be	on	.NET	3.5	SP1	for	this	property	to	exist)	If	you	want	to	use	a	common	format	string	between	bindings,	you	could	declare	the	binding	like	this:	With	your	constants	class	like	this:	public
static	class	Constants{	public	const	string	DateTimeUiFormat	=	"dd/MM/yyyy";	//etc...}	May	be	helpful	to	someone:	or	24h	and	2digits	month	and	year	format:	In	an	usual	application	sometimes	you	need	to	adapt	the	values	from	the	view	model.	This	is	normally	done	using	StringFormat,	but	well	see	some	other	options	as	well.	Simple	StringFormat
with	binding	escapeLets	say	that	you	need	to	display	a	temperature	in	degrees.	In	the	view	model	you	have	just	the	numerical	value	and	in	the	interface	you	want	to	append	the	C	string	to	make	it	clear	what	type	of	degrees	are	displayed.	Heres	how	thats	done:	MultiBindingThe	zero	from	XAML	binding	is	actually	the	first	binding.	In	the	next	example
Name	is	the	{0}	part	and	ID	is	the	{1}	part:	There	are	however	some	other	ways	you	can	concatenate	string	values	in	XAML.	Lets	review	them	quickly:	TextBlock	with	Run	text	Using	StackPanel	to	group	Using	Converters	TextBlock	with	Run	textTextBlock	supports	an	inner	element	called	Run	which	can	be	helpful	when	you	want	to	concatenate
more	things.	Using	StackPanel	to	groupIn	this	case	you	can	just	dump	everything	in	a	StackPanel	having	the	Orientation	set	to	Horizontal.	Using	ConverterAnd	the	last	example,	although	I	wouldnt	really	use	it	in	this	case	(but	shown	nonetheless	just	for	completeness	sake):	public	class	TemperatureConverter	:	IValueConverter	{	public	object
Convert(object	value,	Type	targetType,	object	parameter,	CultureInfo	culture)	{	return	$"Temperature	is	{value}	C";	}	public	object	ConvertBack(object	value,	Type	targetType,	object	parameter,	CultureInfo	culture)	{	throw	new	NotImplementedException();	}}	And	heres	how	to	use	it	in	XAML:	Most	common	formatting	specifiersFormatting
numbers	using	2	decimal	points	is	done	using	F2	-	F	means	floating	point	and	the	following	digit	is	the	number	of	decimal	digits.	In	this	case	I	used	2,	but	it	can	be	any	value.	If	you	want	to	show	only	the	integral	part	then	use	F0.	If	you	also	want	to	display	the	thousands	separator	you	can	use	N2.	Here	are	some	more	examples	showing	how	to	display
currency	and	dates:	Resources	It	is	often	desirable	to	control	the	format	of	dates,	times,	money	and	percentages	when	they	are	displayed.	The	example	screen-shot	below	shows	a	list	of	3	sale	records.	The	sale	information	includes	an	Id,	the	sale	amount,	the	percentage	of	sales	tax	paid	and	the	time	of	the	sale.	Although	the	information	displayed	to
the	user	is	correct,	the	unformatted	data	might	be	difficult	or	confusing	for	a	user	to	read.	The	.NET	framework	includes	a	small	formatting	mini-language	using	strings	like	"{0:C}"	to	format	a	parameter	as	currency.	WPF	data	binding	does	not	have	any	facility	built-in	to	allow	this	formatting,	however	it	is	easy	to	add	by	extending	the	built-in	binding
infrastructure.	This	technique	I	originally	came	across	here	in	the	WPF	forums,	but	it	has	been	extended	here	to	allow	formatting	of	all	data	types.	Implementing	a	custom	ValueConverter	for	FormattingTo	extend	the	binding	infrastructure	to	allow	formatting	I've	created	a	ValueConverter	to	convert	between	a	.NET	object	and	a	string.	Value
converters	implement	the	IValueConverter	interface	in	the	System.Windows.Data	namespace.	This	interface	has	two	methods,	Convert	and	ConvertBack	for	converting	between	two	types.	To	convert	the	data	from	a	.NET	object	to	a	formatted	string	we're	only	going	to	implement	the	Convert()	method.	The	formatting	string	(like	"{0:MM-dd-yyyy}"	if
we	wished	to	format	a	date)	is	passed	to	the	Convert()	method	of	the	ValueConverter	via	the	aptly	named	parameter	parameter.	Fortunately	the	Convert()	method	is	also	passed	a	CultureInfo	parameter	which	we	can	use	to	perform	our	formatting	in	a	culture-specific	way.	Formatting	should	be	culture	aware,	as	different	countries	use	different
symbols	for	currency,	have	different	date	time	formats	and	different	symbols	to	separate	the	whole	and	fractional	parts	of	non-integer	real	numbers.	The	code	for	the	ValueConverter	is	shown	below:	C#	Code	(Feb	2006	CTP)	using	System;using	System.Windows.Data;	namespace	LearnWPF.FormattingAndDataBinding{
[ValueConversion(typeof(object),typeof(string))]	public	class	FormattingConverter:	IValueConverter	{	public	object	Convert(object	value,	Type	targetType,	object	parameter,	System.Globalization.CultureInfo	culture)	{	string	formatString	=	parameter	as	string;	if	(formatString	!=	null)	{	return	string.Format(culture,	formatString,	value);	}	else	{
return	value.ToString();	}	}	public	object	ConvertBack(object	value,	Type	targetType,	object	parameter,	System.Globalization.CultureInfo	culture)	{	//	we	don't	intend	this	to	ever	be	called	return	null;	}	}}	Using	the	Converter	from	our	WPF	ApplicationTo	use	the	converter	in	our	WPF	application	requires	3	steps:	1	-	Create	an	Xml	namespace	prefix
for	the	CLR	namespace	that	contains	the	ValueConverter.	This	is	necessary	any	time	you	want	to	use	one	of	your	own	types	in	mark-up.	The	example	below	tells	the	Xaml	run-time	that	any	time	it	sees	a	"my"	prefix	on	an	element	it	should	look	in	the	LearnWPF.FormattingAndDataBinding	namespace	in	the	current	assembly.	More	details	of	this	can	be
found	here	in	the	Windows	SDK.	xmlns:my="clr-namespace:LearnWPF.FormattingAndDataBinding"	2	-	Create	an	instance	of	our	formatter	as	a	resource*.	In	this	sample	I've	chosen	to	place	it	in	the	resources	dictionary	for	the	window.	A	key	is	required	so	we	can	retrieve	it	later.	3	-	Use	the	Converter	when	binding.	We	do	this	by	specifying	a
Converter	for	the	binding	(the	converter	we	created	in	step	2	as	a	resource),	and	also	setting	the	ConverterParameter.	The	ConverterParameter	is	passed	to	the	IValuConverter's	Convert()	method	as	the	(aptly	named)	parameter	parameter.	The	example	below	passes	a	custom	date	format	string	{0:dd-MMM-yyy	hh:mm}.	Note	that	in	the	format	string
the	curly	brackets	are	escaped	using	the	backslash	character	like	this	\{	and	this	\}.	This	is	necessary	because	the	curly	brackets	are	used	in	Xaml	for	specifying	markup	extensions	like	that	{Binding}	and	{StaticResource}	extensions	seen	in	this	example.	We	need	to	differentiate	our	formatting	string	from	those.	Here	is	the	Xaml	code	containing	all
three	steps	Basic	controls:	The	CheckBox	control	allows	the	end-user	to	toggle	an	option	on	or	off,	usually	reflecting	a	Boolean	value	in	the	Code-behind.	Let's	jump	straight	into	an	example,	in	case	you're	not	sure	how	a	CheckBox	looks:	Application	OptionsEnable	feature	ABCEnable	feature	XYZEnable	feature	WWW	As	you	can	see,	the	CheckBox	is
very	easy	to	use.	On	the	second	CheckBox,	I	use	the	IsChecked	property	to	have	it	checked	by	default,	but	other	than	that,	no	properties	are	needed	to	use	it.	The	IsChecked	property	should	also	be	used	from	Code-behind	if	you	want	to	check	whether	a	certain	CheckBox	is	checked	or	not.Custom	contentThe	CheckBox	control	inherits	from	the
ContentControl	class,	which	means	that	it	can	take	custom	content	and	display	next	to	it.	If	you	just	specify	a	piece	of	text,	like	I	did	in	the	example	above,	WPF	will	put	it	inside	a	TextBlock	control	and	display	it,	but	this	is	just	a	shortcut	to	make	things	easier	for	you.	You	can	use	any	type	of	control	inside	of	it,	as	we'll	see	in	the	next	example:
Application	OptionsEnable	feature	ABCEnable	feature	XYZEnable	feature	WWWAs	you	can	see	from	the	sample	markup,	you	can	do	pretty	much	whatever	you	want	with	the	content.	On	all	three	check	boxes,	I	do	something	differently	with	the	text,	and	on	the	middle	one	I	even	throw	in	an	Image	control.	By	specifying	a	control	as	the	content,	instead
of	just	text,	we	get	much	more	control	of	the	appearance,	and	the	cool	thing	is	that	no	matter	which	part	of	the	content	you	click	on,	it	will	activate	the	CheckBox	and	toggle	it	on	or	off.The	IsThreeState	propertyAs	mentioned,	the	CheckBox	usually	corresponds	to	a	boolean	value,	which	means	that	it	only	has	two	states:	true	or	false	(on	or	off).
However,	since	a	boolean	data	type	might	be	nullable,	effectively	allowing	for	a	third	option	(true,	false	or	null),	the	CheckBox	control	can	also	support	this	case.	By	setting	the	IsThreeState	property	to	true,	the	CheckBox	will	get	a	third	state	called	"the	indeterminate	state".A	common	usage	for	this	is	to	have	a	"Enable	all"	CheckBox,	which	can
control	a	set	of	child	checkboxes,	as	well	as	show	their	collective	state.	Our	example	shows	how	you	may	create	a	list	of	features	that	can	be	toggled	on	and	off,	with	a	common	"Enable	all"	CheckBox	in	the	top:Application	OptionsEnable	allEnable	feature	ABCEnable	feature	XYZEnable	feature	WWWusing	System;using	System.Windows;namespace
WpfTutorialSamples.Basic_controls{public	partial	class	CheckBoxThreeStateSample	:	Window{public	CheckBoxThreeStateSample(){InitializeComponent();}private	void	cbAllFeatures_CheckedChanged(object	sender,	RoutedEventArgs	e){bool	newVal	=	(cbAllFeatures.IsChecked	==	true);cbFeatureAbc.IsChecked	=	newVal;cbFeatureXyz.IsChecked
=	newVal;cbFeatureWww.IsChecked	=	newVal;}private	void	cbFeature_CheckedChanged(object	sender,	RoutedEventArgs	e){cbAllFeatures.IsChecked	=	null;if((cbFeatureAbc.IsChecked	==	true)	&&	(cbFeatureXyz.IsChecked	==	true)	&&	(cbFeatureWww.IsChecked	==	true))cbAllFeatures.IsChecked	=	true;if((cbFeatureAbc.IsChecked	==	false)
&&	(cbFeatureXyz.IsChecked	==	false)	&&	(cbFeatureWww.IsChecked	==	false))cbAllFeatures.IsChecked	=	false;}}}This	example	works	from	two	different	angles:	If	you	check	or	uncheck	the	"Enable	all"	CheckBox,	then	all	of	the	child	check	boxes,	each	representing	an	application	feature	in	our	example,	is	either	checked	or	unchecked.	It	also
works	the	other	way	around	though,	where	checking	or	unchecking	a	child	CheckBox	affects	the	"Enable	all"	CheckBox	state:	If	they	are	all	checked	or	unchecked,	then	the	"Enable	all"	CheckBox	gets	the	same	state	-	otherwise	the	value	will	be	left	with	a	null,	which	forces	the	CheckBox	into	the	indeterminate	state.All	of	this	behavior	can	be	seen	on
the	screenshots	above,	and	is	achieved	by	subscribing	to	the	Checked	and	Unchecked	events	of	the	CheckBox	controls.	In	a	real	world	example,	you	would	likely	bind	the	values	instead,	but	this	example	shows	the	basics	of	using	the	IsThreeState	property	to	create	a	"Toggle	all"	effect.	This	article	has	been	fully	translated	into	the	following	languages:
Is	your	preferred	language	not	on	the	list?	Click	here	to	help	us	translate	this	article	into	your	language!	Data	binding:	As	we	saw	in	the	previous	chapters,	the	way	to	manipulate	the	output	of	a	binding	before	it	is	shown	is	typically	through	the	use	of	a	converter.	The	cool	thing	about	the	converters	is	that	they	allow	you	to	convert	any	data	type	into	a
completely	different	data	type.	However,	for	more	simple	usage	scenarios,	where	you	just	want	to	change	the	way	a	certain	value	is	shown	and	not	necessarily	convert	it	into	a	different	type,	the	StringFormat	property	might	very	well	be	enough.Using	the	StringFormat	property	of	a	binding,	you	lose	some	of	the	flexibility	you	get	when	using	a
converter,	but	in	return,	it's	much	simpler	to	use	and	doesn't	involve	the	creation	of	a	new	class	in	a	new	file.	The	StringFormat	property	does	exactly	what	the	name	implies:	It	formats	the	output	string,	simply	by	calling	the	String.Format	method.	Sometimes	an	example	says	more	than	a	thousand	words,	so	before	I	hit	that	word	count,	let's	jump
straight	into	an	example:The	first	couple	of	TextBlock's	gets	their	value	by	binding	to	the	parent	Window	and	getting	its	width	and	height.	Through	the	StringFormat	property,	the	values	are	formatted.	For	the	width,	we	specify	a	custom	formatting	string	and	for	the	height,	we	ask	it	to	use	the	currency	format,	just	for	fun.	The	value	is	saved	as	a
double	type,	so	we	can	use	all	the	same	format	specifiers	as	if	we	had	called	double.ToString().	You	can	find	a	list	of	them	here:	Also	notice	how	I	can	include	custom	text	in	the	StringFormat	-	this	allows	you	to	pre/post-fix	the	bound	value	with	text	as	you	please.	When	referencing	the	actual	value	inside	the	format	string,	we	surround	it	by	a	set	of
curly	braces,	which	includes	two	values:	A	reference	to	the	value	we	want	to	format	(value	number	0,	which	is	the	first	possible	value)	and	the	format	string,	separated	by	a	colon.For	the	last	two	values,	we	simply	bind	to	the	current	date	(DateTime.Now)	and	the	output	it	first	as	a	date,	in	a	specific	format,	and	then	as	the	time	(hours	and	minutes),
again	using	our	own,	pre-defined	format.	You	can	read	more	about	DateTime	formatting	here:	without	extra	textPlease	be	aware	that	if	you	specify	a	format	string	that	doesn't	include	any	custom	text,	which	all	of	the	examples	above	does,	then	you	need	to	add	an	extra	set	of	curly	braces,	when	defining	it	in	XAML.	The	reason	is	that	WPF	may
otherwise	confuse	the	syntax	with	the	one	used	for	Markup	Extensions.	Here's	an	example:Using	a	specific	CultureIf	you	need	to	output	a	bound	value	in	accordance	with	a	specific	culture,	that's	no	problem.	The	Binding	will	use	the	language	specified	for	the	parent	element,	or	you	can	specify	it	directly	for	the	binding,	using	the	ConverterCulture
property.	Here's	an	example:It's	pretty	simple:	By	combining	the	StringFormat	property,	which	uses	the	D	specifier	(Long	date	pattern)	and	the	ConverterCulture	property,	we	can	output	the	bound	values	in	accordance	with	a	specific	culture.	Pretty	nifty!	This	article	has	been	fully	translated	into	the	following	languages:	Is	your	preferred	language
not	on	the	list?	Click	here	to	help	us	translate	this	article	into	your	language!	So	you	want	to	format	the	output	of	information	but	dont	want	do	it	in	code	behind	or	write	a	value	converter	to	do	it.	Well,	good	news,	you	dont	have	to.	You	can	format	your	data	directly	in	XAML.	How,	you	may	be	asking?	New	in	.NET	3.5	SP1	is	the	StringFormat
attribute.	Example	1:	Lets	say	you	want	to	format	a	double	value	into	a	currency:	Notice	the	{	}	just	after	the	StringFormat	attribute?	What	that	is	doing	is	escaping	the	text	after	the	=	sign.	You	need	to	do	this	because	we	do	not	have	any	text	directly	after	the	=	sign.	If	you	dont	put	the	{	},	strange	things	will	happen.	And	now	lets	say	we	want	to
place	some	text	in	front	of	the	currency:	Since	we	now	have	text	after	the	=	sign	we	no	longer	need	the	{	}.	How	about	a	date	you	ask:	Oh,	and	you	want	time:	What?	You	want	to	create	a	tooltip	comprised	of	more	than	one	property	of	an	object.	Well	Okay:	As	you	can	see	the	StringFormat	attribute	can	be	a	time	saver,	and	just	make	life	a	little	easier.
One	thing	to	note	is	that	if	you	use	the	StringFormat	attribute	and	you	bind	to	a	property	that	has	no	value,	otherwise	known	as	null,	then	the	text	that	will	be	displayed	is	{DependencyProperty.UnsetValue}".	Data	binding:	Wikipedia	describes	the	concept	of	data	binding	very	well:Data	binding	is	general	technique	that	binds	two	data/information
sources	together	and	maintains	synchronization	of	data.	With	WPF,	Microsoft	has	put	data	binding	in	the	front	seat	and	once	you	start	learning	WPF,	you	will	realize	that	it's	an	important	aspect	of	pretty	much	everything	you	do.	If	you	come	from	the	world	of	WinForms,	then	the	huge	focus	on	data	binding	might	scare	you	a	bit,	but	once	you	get	used
to	it,	you	will	likely	come	to	love	it,	as	it	makes	a	lot	of	things	cleaner	and	easier	to	maintain.Data	binding	in	WPF	is	the	preferred	way	to	bring	data	from	your	code	to	the	UI	layer.	Sure,	you	can	set	properties	on	a	control	manually	or	you	can	populate	a	ListBox	by	adding	items	to	it	from	a	loop,	but	the	cleanest	and	purest	WPF	way	is	to	add	a	binding
between	the	source	and	the	destination	UI	element.SummaryIn	the	next	chapter,	we'll	look	into	a	simple	example	where	data	binding	is	used	and	after	that,	we'll	talk	some	more	about	all	the	possibilities.	The	concept	of	data	binding	is	included	pretty	early	in	this	tutorial,	because	it's	such	an	integral	part	of	using	WPF,	which	you	will	see	once	you
explore	the	rest	of	the	chapters,	where	it's	used	almost	all	of	the	time.	However,	the	more	theoretical	part	of	data	binding	might	be	too	heavy	if	you	just	want	to	get	started	building	a	simple	WPF	application.	In	that	case	I	suggest	that	you	have	a	look	at	the	"Hello,	bound	world!"	article	to	get	a	glimpse	of	how	data	binding	works,	and	then	save	the
rest	of	the	data	binding	articles	for	later,	when	you're	ready	to	get	some	more	theory.	wpf-tutorial.com	2007-2025	Contact	Us	Suggest	Correction	Localization	Data	binding:	StringFormat	StringFormat	StringFormat	String.Format	StringFormat	doubledouble.ToString()	StringFormat	(DateTime.Now)	DateTime	Window
x:Class="WpfTutorialSamples.DataBinding.StringFormatSample"	xmlns="	xmlns:x="	xmlns:system="clr-namespace:System;assembly=mscorlib"	Title="StringFormatSample"	Height="150"	Width="250"Name="wnd">ConverterCulture	D	StringFormat	ConverterCulture	This	article	has	been	fully	translated	into	the	following	languages:	Is	your
preferred	language	not	on	the	list?	Click	here	to	help	us	translate	this	article	into	your	language!	Data	binding:	As	we	saw	in	the	previous	data	binding	examples,	defining	a	binding	by	using	XAML	is	very	easy,	but	for	certain	cases,	you	may	want	to	do	it	from	Code-behind	instead.	This	is	pretty	easy	as	well	and	offers	the	exact	same	possibilities	as
when	you're	using	XAML.	Let's	try	the	"Hello,	bound	world"	example,	but	this	time	create	the	required	binding	from	Code-behind:	using	System;using	System.Windows;using	System.Windows.Controls;using	System.Windows.Data;namespace	WpfTutorialSamples.DataBinding{	public	partial	class	CodeBehindBindingsSample	:	Window	{	public
CodeBehindBindingsSample()	{	InitializeComponent();	Binding	binding	=	new	Binding("Text");	binding.Source	=	txtValue;	lblValue.SetBinding(TextBlock.TextProperty,	binding);	}	}}It	works	by	creating	a	Binding	instance.	We	specify	the	path	we	want	directly	in	the	constructor,	in	this	case	"Text",	since	we	want	to	bind	to	the	Text	property.	We	then
specify	a	Source,	which	for	this	example	should	be	the	TextBox	control.	Now	WPF	knows	that	it	should	use	the	TextBox	as	the	source	control,	and	that	we're	specifically	looking	for	the	value	contained	in	its	Text	property.In	the	last	line,	we	use	the	SetBinding	method	to	combine	our	newly	created	Binding	object	with	the	destination/target	control,	in
this	case	the	TextBlock	(lblValue).	The	SetBinding()	method	takes	two	parameters,	one	that	tells	which	dependency	property	that	we	want	to	bind	to,	and	one	that	holds	the	binding	object	that	we	wish	to	use.	SummaryAs	you	can	see,	creating	bindings	in	C#	code	is	easy,	and	perhaps	a	bit	easier	to	grasp	for	people	new	to	data	bindings,	when
compared	to	the	syntax	used	for	creating	them	inline	in	XAML.	Which	method	you	use	is	up	to	you	though	-	they	both	work	just	fine.	This	article	has	been	fully	translated	into	the	following	languages:	Is	your	preferred	language	not	on	the	list?	Click	here	to	help	us	translate	this	article	into	your	language!	You	signed	in	with	another	tab	or	window.
Reload	to	refresh	your	session.	You	signed	out	in	another	tab	or	window.	Reload	to	refresh	your	session.	You	switched	accounts	on	another	tab	or	window.	Reload	to	refresh	your	session.	Dismiss	alert	Instantly	share	code,	notes,	and	snippets.	Clone	this	repository	at	<script	src="	quot;></script>	Save	ebersys/5144657	to	your	computer	and	use	it	in
GitHub	Desktop.	Clone	this	repository	at	<script	src="	quot;></script>	Save	ebersys/5144657	to	your	computer	and	use	it	in	GitHub	Desktop.	WPF:	Bind	formatted	DateTime,	using	a	constant	if	you	want	to	reuse,	or	actual	StringFormat	You	cant	perform	that	action	at	this	time.	

Wpf	textblock	datetime	format.	Wpf	textblock	stringformat	date.	Wpf	textblock	stringformat	datetime.


