
	

https://pepuvalonuvufe.maxudijuz.com/358700455575200400724598163509635987435228?benarubiderinalezidakaxiwarazagamagitomawuzijivovadudimopirijerebu=mepijizebeguxebotumixilivugijelibakafaxiritovebakiwuparujidapoxuvorinobipiwinapiwivivamagerajaguzujuxixepabuvanepepaligoluxozorusamopikekuxevuwafovutadofebipuwebiwolofuzigaserunuwexegomijiniwilovixerorebu&utm_term=faber+piano+adventure+2b&mawujataxezitikanutevazugoviruxeramoduditofigubik=zigobiperiritogotedoserajinevutitukenunijokosefuvupakegixakajutijabajexelajogizirazudidejexubozegakotojofosoxegiburanabebizaruzagufabizusota

This	article	shows	how	to	fetch	GraphQL	data	in	React	with	the	hook	and	attach	the	result	to	your	UI.	You'll	also	learn	how	simplifies	data	management	code	by	tracking	error	and	loading	states	for	you.PrerequisitesThis	article	assumes	you're	familiar	with	building	basic	GraphQL	queries.	If	you	need	a	refresher,	we	recommend	this	guide.	You	can
also	build	example	queries	against	Apollo's	full-stack	tutorial	server.This	article	also	assumes	that	you've	already	set	up	Apollo	Client	and	have	wrapped	your	React	app	in	an	component.	For	more	information,	see	the	getting	started	guide.To	follow	along	with	the	examples	below,	open	up	our	starter	project	and	sample	GraphQL	server	on
CodeSandbox.	You	can	view	the	completed	version	of	the	app	here.Executing	a	queryThe	React	hook	is	the	primary	API	for	executing	queries	in	an	Apollo	application.	To	run	a	query	within	a	React	component,	call	and	pass	it	a	GraphQL	query	string.	When	your	component	renders,	returns	an	object	from	Apollo	Client	that	contains	,	,	and	properties
you	can	use	to	render	your	UI.Note:	in	Apollo	Client	>=	3.8,	Suspense	data	fetching	hooks	are	available	for	querying	data	within	boundaries	using	React	18's	new	concurrent	rendering	model.	For	more	information	see	Apollo	Client's	Suspense	docs.Let's	look	at	an	example.	First,	we'll	create	a	GraphQL	query	named	.	Remember	to	wrap	query	strings
in	the	function	to	parse	them	into	query	documents:Next,	we'll	create	a	component	named	.	Inside	it,	we'll	pass	our	query	to	the	hook:As	our	query	executes	and	the	values	of	,	,	and	change,	the	component	can	intelligently	render	different	UI	elements	according	to	the	query's	state:As	long	as	is	(indicating	the	query	is	still	in	flight),	the	component
presents	a	notice.When	loading	is	and	there	is	no	,	the	query	has	completed.	The	component	renders	a	dropdown	menu	that's	populated	with	the	list	of	dog	breeds	returned	by	the	server.When	the	user	selects	a	dog	breed	from	the	populated	dropdown,	the	selection	is	sent	to	the	parent	component	via	the	provided	function.In	the	next	step,	we'll
associate	the	dropdown	with	a	more	sophisticated	query	that	uses	GraphQL	variables.Caching	query	resultsWhenever	Apollo	Client	fetches	query	results	from	your	server,	it	automatically	caches	those	results	locally.	This	makes	later	executions	of	that	same	query	extremely	fast.To	see	this	caching	in	action,	let's	build	a	new	component	called	.
accepts	a	prop	called	that	reflects	the	current	value	of	the	dropdown	menu	in	our	component:Notice	that	we're	providing	a	configuration	option	()	to	the	hook	this	time.	The	option	is	an	object	that	contains	all	of	the	variables	we	want	to	pass	to	our	GraphQL	query.	In	this	case,	we	want	to	pass	the	currently	selected	from	the	dropdown.Select	from	the
dropdown	to	see	its	photo	appear.	Then	switch	to	another	breed,	and	then	switch	back	to	.	You'll	notice	that	the	bulldog	photo	loads	instantly	the	second	time	around.	This	is	the	cache	at	work!Next,	let's	learn	some	techniques	for	ensuring	that	our	cached	data	is	fresh.Updating	cached	query	resultsSometimes,	you	want	to	make	sure	that	your	query's
cached	data	is	up	to	date	with	your	server's	data.	Apollo	Client	supports	two	strategies	for	this:	polling	and	refetching.PollingPolling	provides	near-real-time	synchronization	with	your	server	by	executing	your	query	periodically	at	a	specified	interval.	To	enable	polling	for	a	query,	pass	a	configuration	option	to	the	hook	with	an	interval	in
milliseconds:By	setting	to	500,	we	fetch	the	current	breed's	image	from	the	server	every	0.5	seconds.	Note	that	if	you	set	to	,	the	query	does	not	poll.You	can	also	start	and	stop	polling	dynamically	with	the	and	functions	that	are	returned	by	the	hook.	When	using	these	functions,	set	the	configuration	option	as	a	parameter	of	the
function.RefetchingRefetching	enables	you	to	refresh	query	results	in	response	to	a	particular	useraction,	as	opposed	to	using	a	fixed	interval.Let's	add	a	button	to	our	component	that	calls	our	query's	function	whenever	it's	clicked.You	can	optionally	provide	a	new	object	to	the	function.If	you	avoid	passing	a	object	and	use	only	,	the	queryuses	the
same	that	it	used	in	its	previous	execution.Click	the	button	and	notice	that	the	UI	updates	with	a	new	dog	photo.	Refetching	is	an	excellent	way	to	guarantee	fresh	data,	but	it	introduces	some	complexity	with	loading	state.	In	the	next	section,	we'll	cover	strategies	for	handling	complex	loading	and	error	state.Providing	new	variables	to	You	call	with	a
new	set	of	variables	like	so:If	you	provide	new	values	for	some	of	your	original	query's	variables	but	not	all	of	them,	uses	each	omitted	variable's	original	value.Inspecting	loading	statesWe've	already	seen	that	the	hook	exposes	our	query's	current	loading	state.	This	is	helpful	when	a	query	first	loads,	but	what	happens	to	our	loading	state	when	we're
refetching	or	polling?Let's	return	to	our	refetching	example	from	the	previous	section.	If	you	click	the	refetch	button,	you'll	see	that	the	component	doesn't	re-render	until	the	new	data	arrives.	What	if	we	want	to	indicate	to	the	user	that	we're	refetching	the	photo?The	hook's	result	object	provides	fine-grained	information	about	the	status	of	the	query
via	the	property.	To	take	advantageof	this	information,	we	set	the	option	to	so	our	query	component	re-renders	while	a	refetch	is	in	flight:Enabling	this	option	also	ensures	that	the	value	of	updates	accordingly,	even	if	you	don't	want	to	use	the	more	fine-grained	information	provided	by	the	property.The	property	is	a	enum	that	represents	different
loading	states.	Refetch	is	represented	by	,	and	there	are	also	values	for	polling	and	pagination.	For	a	full	list	of	all	the	possible	loading	states,	check	out	the	source.To	view	a	complete	version	of	the	app	we	just	built,	check	out	the	CodeSandbox	here.Inspecting	error	statesYou	can	customize	your	query	error	handling	by	providing	the	configuration
option	to	the	hook.	The	default	value	is	,	which	tells	Apollo	Client	to	treat	all	GraphQL	errors	as	runtime	errors.	In	this	case,	Apollo	Client	discards	any	query	response	data	returned	by	the	server	and	sets	the	property	in	the	result	object.If	you	set	to	,	does	not	discard	query	response	data,	allowing	you	to	render	partial	results.For	more	information,
see	Handling	operation	errors.Manual	execution	with	When	React	renders	a	component	that	calls	,	Apollo	Client	automatically	executes	the	corresponding	query.	But	what	if	you	want	to	execute	a	query	in	response	to	a	different	event,	such	as	a	user	clicking	a	button?The	hook	is	perfect	for	executing	queries	in	response	to	events	besides	component
rendering.	Unlike	with	,	when	you	call	,	it	does	not	immediately	execute	its	associated	query.	Instead,	it	returns	a	query	function	in	its	result	tuple	that	you	call	whenever	you're	ready	to	execute	the	query.Here's	an	example:The	first	item	in	's	return	tuple	is	the	query	function,	and	the	second	item	is	the	same	result	object	returned	by	.As	shown	above,
you	can	pass	options	to	the	query	function	just	like	you	pass	them	to	itself.	If	you	pass	a	particular	option	to	both,	the	value	you	pass	to	the	query	function	takes	precedence.	This	is	a	handy	way	to	pass	default	options	to	and	then	customize	those	options	in	the	query	function.For	a	full	list	of	supported	options,	see	the	API	reference.Setting	a	fetch
policyBy	default,	the	hook	checks	the	Apollo	Client	cache	to	see	if	all	the	data	you	requested	is	already	available	locally.	If	all	data	is	available	locally,	returns	that	data	and	doesn't	query	your	GraphQL	server.	This	policy	is	Apollo	Client's	default	fetch	policy.You	can	specify	a	different	fetch	policy	for	a	given	query.	To	do	so,	include	the	option	in	your
call	to	:Requires	3.1You	can	also	specify	a	query's	.	If	you	do,	is	used	for	the	query's	first	execution,	and	is	used	to	determine	how	the	query	responds	to	future	cache	updates:For	example,	this	is	helpful	if	you	want	a	query	to	always	make	an	initial	network	request,	but	you're	comfortable	reading	from	the	cache	after	that.	functionsIf	you	want	to	apply
a	single	by	default,	because	you	find	yourself	manually	providing	for	most	of	your	queries,	you	can	configure	when	creating	your	instance:This	configuration	applies	to	all	calls	and	calls	that	do	not	otherwise	configure	.If	you	want	more	control	over	how	behaves,	you	can	provide	a	function	instead	of	a	string:This	function	will	be	called	after	each
request,	and	uses	the	parameter	to	decide	how	to	modify	the	fetch	policy.In	addition	to	being	called	after	each	request,	your	function	will	also	be	called	when	variables	change,	which	by	default	resets	the	to	its	initial	value,	which	is	often	important	to	trigger	a	fresh	network	request	for	queries	that	started	out	with	or	fetch	policies.To	intercept	and
handle	the	case	yourself,	you	can	use	the	object	passed	as	the	second	argument	to	your	function:In	order	to	debug	these	transitions,	it	can	be	useful	to	add	or	statements	to	the	function	body,	to	see	when	and	why	the	function	is	called.Supported	fetch	policies	APISupported	options	and	result	fields	for	the	hook	are	listed	below.Most	calls	to	can	omit
the	majority	of	these	options,	but	it's	useful	to	know	they	exist.	To	learn	about	the	hook	API	in	more	detail	with	usage	examples,	see	the	API	reference.OptionsThe	hook	accepts	the	following	options:ResultAfter	being	called,	the	hook	returns	a	result	object	with	the	following	properties.	This	object	contains	your	query	result,	plus	some	helpful	functions
for	refetching,	dynamic	polling,	and	pagination.Next	stepsNow	that	you	understand	how	to	fetch	data	with	the	hook,	learn	how	to	update	your	data	with	the	hook!After	that,	learn	about	some	other	handy	Apollo	Client	features:	In	my	post	about	React-Query	for	managing	server	state,	I	talked	about	the	basic	concepts	for	you	to	start	working	with
React-query.	In	this	post,	I	would	like	to	talk	more	about	useQuery	hook.	More	specifically	about	polling,	background	data	fetching,	and	data	transformation.	Polling	is	the	process	of	repeatedly	fetching	data,	automatically,	from	a	remote	data	source	at	regular	intervals.	By	default,	useQuery	does	not	fetch	data	automatically.	It	needs	some	sort	of
trigger.	Suppose	you	are	developing	a	real-time	system	where	data	is	frequently	changing,	and	you	need	to	incorporate	React	Query	in	the	front	end.	Its	evident	that	data	needs	to	be	fetched	regularly	from	the	backend	to	keep	the	front	end	in	sync.	To	achieve	this,	polling	is	a	viable	solution.	But,	how	are	you	going	to	implement	it?	This	is	where	the
refetchInterval	property	of	the	useQuery	hook	comes	into	play.	By	setting	this	property	to	a	specified	time	interval	in	milliseconds,	the	useQuery	hook	will	automatically	refetch	data	from	the	backend	at	that	interval,	enabling	real-time	data	updates	in	the	front	end.	const	{	data	}	=	useQuery({	queryKey:	['product'],	queryFn:	()	=>	fetch(url).then(
res	=>	res.json()),	refetchInterval:3000,	})	Watch	the	video	below	to	see	how	useQuery	works	with	refetchInterval	option	While	the	refetchInterval	property	enabled	data	refetching	,	there	is	one	limitation	to	this	property.	That	is	it	will	refetch	data	as	long	as	the	browser	window	is	active.	If	the	browser	window	is	not	active,	useQuery	will	stop
fetching	data.	What	if	you	want	to	refech	data	even	when	the	browser	window	is	not	active?	useQuery	offers	another	solution	for	this.	That	is	refetchIntervalInBackground	property.	The	correct	default	value	for	refetchIntervalInBackground	in	the	useQuery	hook	is	false,	which	means	that	by	default,	the	hook	will	not	refetch	data	in	the	background	at
the	specified	interval	when	the	browser	window	is	not	active.	If	you	want	to	change	this	behavior	and	have	the	hook	continue	to	refetch	data	in	the	background,	you	can	set	refetchIntervalInBackground	to	true.	The	following	video	shows	how	to	test	this	property.	You	can	use	the	select	option	to	transform	or	select	a	part	of	the	data	returned	by	the
query	function.	In	the	select	option,	you	can	define	a	function	to	transform	the	returned	data	of	the	useQuery	hook.	But,	this	select	function	does	not	affect	what	gets	stored	in	the	query	cache.In	other	words,	when	you	use	the	select	option,	UseQuery	will	still	fetch	the	data	from	the	API	using	the	queryKey	and	queryFn	options	that	you	specify.	Once
the	data	is	fetched,	the	select	function	is	applied	to	the	data	and	the	trans	const	{	data	}	=	useQuery({	queryKey:	['product'],	queryFn:	()	=>	fetch(url).then(res	=>	res.json()),	select:	(data)	=>	data.map(e	=>	e.name)	})	In	the	above	code,	the	select	option	changes	what	is	returned	to	the	Component.	The	component	can	now	use	only	the	name
of	the	product.	However,	the	cache	has	both	the	product	id,	name,	and	price.	Note:	Because	the	select	option	influences	the	returned	data,	you	need	might	need	to	change	how	you	access	data	inside	the	return	statement	in	the	React	Component	For	example:	Without	select	option:	return({	data?.map((product,	key)	=>	{	product.name	})})	If	you
add	the	select	option	below	select:(data)	=>	data.map(element	=>	element.name)	Because	the	map	function	returns	an	array	of	names(of	the	products),	you	need	to	change	the	return	a	statement	of	the	Component	as	below	return({	data?.map((product,	key)	=>	{	product	})}	However,	this	largely	depends	on	the	code	of	your	application.	For
example,	if	I	add	the	following	function	in	the	select	option	I	do	not	need	to	do	any	changes	inside	the	return	statement.	select:(data)	=>	data.map(element	=>	{	return	{name:	element.name	}	})	In	the	above	code	snippet,	the	map	function	returns	an	array	of	objects	with	name	as	the	key	and	the	name	of	the	product	as	the	value.	Therefore,	I	do
not	need	to	do	any	changes	in	my	code	in	the	return	statement.	React-Querys	useQuery	hook	provides	several	powerful	options	that	can	help	you	build	flexible	and	efficient	data-fetching	solutions	in	your	React	applications.	Whether	you	need	to	poll	an	API	at	a	regular	interval,	fetch	data	in	the	background,	or	transform	the	data	before	its	returned	to
the	component,	options	like	refetchInterval,	refetchIntervalInBackground,	and	select	make	it	easy	to	get	the	job	done.	By	using	these	options	in	different	ways,	you	can	create	data-fetching	solutions	that	meet	the	specific	needs	of	your	application.	Download	the	full	code	Note:	In	my	demo	project,	I	utilize	a	mock	API	I	created	withmockapi.io.
However,	I	highly	recommend	creating	your	own	API	endpoint	with	mockapi.io.	This	is	because	it	can	be	easier	for	you	to	do	your	experiment	while	you	are	learning.	useQuery	API	reference	You	cant	perform	that	action	at	this	time.	Placeholder	data	allows	a	query	to	behave	as	if	it	already	has	data,	similar	to	the	initialData	option,	but	the	data	is	not
persisted	to	the	cache.	This	comes	in	handy	for	situations	where	you	have	enough	partial	(or	fake)	data	to	render	the	query	successfully	while	the	actual	data	is	fetched	in	the	background.Example:	An	individual	blog	post	query	could	pull	"preview"	data	from	a	parent	list	of	blog	posts	that	only	include	title	and	a	small	snippet	of	the	post	body.	You
would	not	want	to	persist	this	partial	data	to	the	query	result	of	the	individual	query,	but	it	is	useful	for	showing	the	content	layout	as	quickly	as	possible	while	the	actual	query	finishes	to	fetch	the	entire	object.There	are	a	few	ways	to	supply	placeholder	data	for	a	query	to	the	cache	before	you	need	it:	function	Todos()	{	const	result	=	useQuery({
queryKey:	['todos'],	queryFn:	()	=>	fetch('/todos'),	placeholderData:	placeholderTodos,	})}function	Todos()	{	const	result	=	useQuery({	queryKey:	['todos'],	queryFn:	()	=>	fetch('/todos'),	placeholderData:	placeholderTodos,	})}If	the	process	for	accessing	a	query's	placeholder	data	is	intensive	or	just	not	something	you	want	to	perform	on	every
render,	you	can	memoize	the	value:function	Todos()	{	const	placeholderData	=	useMemo(()	=>	generateFakeTodos(),	[])	const	result	=	useQuery({	queryKey:	['todos'],	queryFn:	()	=>	fetch('/todos'),	placeholderData,	})}function	Todos()	{	const	placeholderData	=	useMemo(()	=>	generateFakeTodos(),	[])	const	result	=	useQuery({	queryKey:	['todos'],
queryFn:	()	=>	fetch('/todos'),	placeholderData,	})}In	some	circumstances,	you	may	be	able	to	provide	the	placeholder	data	for	a	query	from	the	cached	result	of	another.	A	good	example	of	this	would	be	searching	the	cached	data	from	a	blog	post	list	query	for	a	preview	version	of	the	post,	then	using	that	as	the	placeholder	data	for	your	individual
post	query:function	Todo({	blogPostId	})	{	const	result	=	useQuery({	queryKey:	['blogPost',	blogPostId],	queryFn:	()	=>	fetch(`/blogPosts/${blogPostId}`),	placeholderData:	()	=>	{	//	Use	the	smaller/preview	version	of	the	blogPost	from	the	'blogPosts'	//	query	as	the	placeholder	data	for	this	blogPost	query	return	queryClient
.getQueryData(['blogPosts'])	?.find((d)	=>	d.id	===	blogPostId)	},	})}function	Todo({	blogPostId	})	{	const	result	=	useQuery({	queryKey:	['blogPost',	blogPostId],	queryFn:	()	=>	fetch(`/blogPosts/${blogPostId}`),	placeholderData:	()	=>	{	//	Use	the	smaller/preview	version	of	the	blogPost	from	the	'blogPosts'	//	query	as	the	placeholder	data	for	this
blogPost	query	return	queryClient	.getQueryData(['blogPosts'])	?.find((d)	=>	d.id	===	blogPostId)	},	})}For	a	comparison	between	Placeholder	Data	and	Initial	Data,	have	a	look	at	the	Community	Resources.In	this	tutorial,	we'll	develop	a	secure	poll	and	voting	system	using	PHP	and	MySQL.	This	system	will	allow	you	to	interact	with	your	audience
and	display	a	collection	of	polls.	You'll	learn	to	create	polls,	implement	a	voting	system,	delete	polls,	and	display	the	list	of	published	polls.A	poll	and	voting	system	lets	people	share	their	opinions	on	a	question	by	choosing	from	several	answer	options.	Users	select	their	choice,	and	the	system	counts	all	the	votes	to	show	the	overall	results.	This	is
often	used	in	surveys,	market	research,	and	online	platforms	to	gather	feedback	and	understand	what	people	think	about	various	topics.During	poll	creation,	you	can	specify	multiple	answers,	as	they	will	be	stored	in	a	separate	database	table.	One	table	will	store	poll-related	data	(title,	description,	etc.),	while	the	other	will	store	the	answers,	linking
both	to	display	the	poll	list.The	Advanced	package	includes	additional	features	and	a	download	link	to	the	source	code.	1.	Getting	StartedBefore	we	jump	into	programming	our	poll	and	voting	system,	there	are	a	few	requirements	that	need	to	be	met.	We	need	to	install	the	development	tools	and	set	up	the	file	structure	for	our	app.1.1.	What	You	Will
Learn	in	this	TutorialForm	Design	Design	a	Poll	and	Voting	app	with	HTML5	and	CSS3.Poll	System	Create	a	working	poll	system	with	PHP	&	MySQL	(create	polls,	delete	polls,	and	view	polls).Voting	System	Each	poll	will	consist	of	answers	that	the	user	can	select	to	cast	a	vote	and	subsequently	view	the	result.MySQL	Database	Interaction	Interact
with	a	MySQL	database	using	the	PHP	PDO	interface.	All	data	entered	during	the	creation	phase	will	be	stored	in	the	MySQL	database.Basic	Template	System	We'll	create	a	basic	template	system	for	our	app,	which	will	consist	of	header	and	footer	functions.	Those	functions	can	then	be	implemented	on	all	the	pages	we	create.	It's	so	we	don't	have	to
write	the	same	code	over	and	over.1.2.	RequirementsDownload	and	install	XAMPP	XAMPP	is	a	web	server	that	includes	the	essential	software	for	web	developers	(PHP,	MySQL,	Apache,	etc).	Skip	this	step	if	you	already	have	a	development	server	installed.1.3.	File	Structure	&	SetupNavigate	to	your	XAMPP	htdocs	directory	(usually	located	at
C:\xampp\htdocs)	and	create	the	following	files	and	directories:\--	phppoll|--	functions.php|--	index.php|--	create.php|--	vote.php|--	result.php|--	delete.php|--	style.css	Each	file	will	contain	the	following:functions.php	The	functions	file	will	contain	the	template	and	database	connection	functions.index.php	The	index	page	will	contain	the	list	of	published
polls	and	the	navigation	buttons.create.php	The	create	page	will	contain	form	input	fields,	which	we	can	use	to	create	new	polls.vote.php	The	vote	page	will	consist	of	poll	answers	with	the	option	to	cast	a	vote.result.php	The	result	page	will	show	the	results	for	the	specified	poll,	while	each	answer	will	show	the	number	of	votes	and	the	percentage
bar.style.css	The	stylesheet	(CSS3)	for	our	poll	and	voting	system.2.	Creating	the	Database	and	setting-up	TablesIf	you	have	installed	XAMPP,	you	can	create	the	MySQL	database	with	phpMyAdmin.	Although,	you	need	to	make	sure	you	start	your	web	server:	open	the	XAMPP	control	panel	and	click	the	Start	button	for	both	Apache	and
MySQL.Navigate	to	in	your	browser.Click	the	SQL	tab	at	the	top	and	execute	the	following	SQL	statement:CREATE	DATABASE	IF	NOT	EXISTS	`phppoll`	DEFAULT	CHARACTER	SET	utf8	COLLATE	utf8_general_ci;USE	`phppoll`;CREATE	TABLE	IF	NOT	EXISTS	`polls`	(`id`	int(11)	NOT	NULL	AUTO_INCREMENT,	`title`	text	NOT	NULL,
`description`	text	NOT	NULL,	PRIMARY	KEY	(`id`))	ENGINE=InnoDB	AUTO_INCREMENT=2	DEFAULT	CHARSET=utf8;INSERT	INTO	`polls`	(`id`,	`title`,	`description`)	VALUES	(1,	'What''s	your	favorite	programming	language?',	'');CREATE	TABLE	IF	NOT	EXISTS	`poll_answers`	(`id`	int(11)	NOT	NULL	AUTO_INCREMENT,	`poll_id`	int(11)	NOT
NULL,	`title`	text	NOT	NULL,	`votes`	int(11)	NOT	NULL	DEFAULT	'0',	PRIMARY	KEY	(`id`))	ENGINE=InnoDB	AUTO_INCREMENT=5	DEFAULT	CHARSET=utf8;INSERT	INTO	`poll_answers`	(`id`,	`poll_id`,	`title`,	`votes`)	VALUES	(1,	1,	'PHP',	0),	(2,	1,	'Python',	0),	(3,	1,	'C#',	0),	(4,	1,	'Java',	0);In	phpMyAdmin,	our	database	should	resemble	the
following:A	summary	of	each	table	and	the	columns	associated	with	them:polls	table	This	table	will	contain	information	related	to	the	polls	we	create	(title	and	description).id	The	unique	ID	for	the	poll,	which	will	be	auto-incremented,	meaning	the	number	will	increase	as	more	rows	are	created.title	The	title	of	the	poll,	which	could	be	a	question,
etc.description	The	description	of	the	poll,	which	is	optional	during	the	creation	phase.poll_answers	table	This	table	will	contain	all	the	answers	for	our	created	polls.id	Unique	ID,	which	will	be	auto	incremented.poll_id	The	poll	ID,	which	will	be	associated	with	the	id	column	in	the	polls	table.	It's	how	we	can	relate	both	tables.title	The	title	of	the	poll
answer.votes	The	number	of	votes	the	answer	has.To	make	sure	the	database	has	been	successfully	imported,	you	can	check	on	phpMyAdmin	click	the	database	name	in	the	left	side	navigation	panel	and	you	should	see	the	following:3.	Creating	the	Stylesheet	(CSS3)The	stylesheet	will	format	the	structure	of	our	poll	and	voting	system	and	make	it
look	more	appealing.	Add	the	following	CSS	code	to	the	style.css	file:*	{	box-sizing:	border-box;	font-family:	system-ui,	"Segoe	UI",	Roboto,	Helvetica,	Arial,	sans-serif,	"Apple	Color	Emoji",	"Segoe	UI	Emoji",	"Segoe	UI	Symbol";	font-size:	16px;}body	{	background-color:	#FFFFFF;	margin:	0;}.navtop	{	background-color:	#313d4e;	height:	60px;	width:
100%;	border:	0;}.navtop	div	{	display:	flex;	margin:	0	auto;	width:	900px;	height:	100%;}.navtop	div	h1,	.navtop	div	a	{	display:	inline-flex;	align-items:	center;}.navtop	div	h1	{	flex:	1;	font-size:	20px;	padding:	0;	margin:	0;	color:	#eaeced;	font-weight:	normal;}.navtop	div	a	{	padding:	0	20px;	text-decoration:	none;	color:	#c1c5ca;	font-weight:
500;}.navtop	div	a	svg	{	fill:	#c1c5ca;	margin:	2px	5px	0	0;}.navtop	div	a:hover	{	color:	#eaeced;}.content	{	width:	900px;	margin:	0	auto;}.content	h2	{	margin:	0;	padding:	25px	0	10px	0;	font-size:	22px;	font-weight:	600;	color:	#474b50;}.home	.create-poll	{	display:	inline-flex;	align-items:	center;	justify-content:	center;	text-decoration:	none;
appearance:	none;	cursor:	pointer;	border:	0;	background:	#2873cf;	color:	#FFFFFF;	padding:	0	14px;	font-size:	14px;	font-weight:	600;	border-radius:	4px;	height:	35px;	margin-top:	10px;	box-shadow:	0px	0px	6px	1px	rgba(45,	54,	68,	0.1);}.home	.create-poll:hover	{	background:	#266cc2;}.home	table	{	width:	100%;	margin-top:	30px;	border-
collapse:	collapse;}.home	table	thead	{	border-bottom:	1px	solid	#ebedf0;}.home	table	thead	td	{	padding:	15px;	font-weight:	500;	color:	#787a7c;	font-size:	14px;}.home	table	tbody	tr	{	border-bottom:	1px	solid	#ebedf0;}.home	table	tbody	tr:nth-child(odd)	{	background-color:	#fafafc;}.home	table	tbody	tr	td	{	padding:	15px;}.home	table	tbody	tr
td:nth-child(1)	{	color:	#a8aaad;}.home	table	tbody	tr	td	.poll-answer	{	display:	inline-flex;	align-items:	center;	justify-content:	center;	padding:	4px	10px;	background-color:	#f8eabd;	color:	#c99f15;	border-radius:	15px;	margin-right:	4px;	font-size:	12px;	font-weight:	500;}.home	table	tbody	tr	td.actions	{	padding:	8px;	text-align:	right;}.home	table
tbody	tr	td.actions	.view,	.home	table	tbody	tr	td.actions	.trash	{	display:	inline-flex;	text-align:	right;	text-decoration:	none;	color:	#FFFFFF;	padding:	7px	9px;	border-radius:	5px;	margin-left:	3px;}.home	table	tbody	tr	td.actions	.view	svg,	.home	table	tbody	tr	td.actions	.trash	svg	{	fill:	#fff;}.home	table	tbody	tr	td.actions	.trash	{	background-color:
#b73737;}.home	table	tbody	tr	td.actions	.trash:hover	{	background-color:	#a33131;}.home	table	tbody	tr	td.actions	.view	{	background-color:	#37b770;}.home	table	tbody	tr	td.actions	.view:hover	{	background-color:	#31a364;}.update	form	{	padding:	15px	0;	display:	flex;	flex-flow:	column;	width:	400px;}.update	form	label	{	display:	inline-flex;
width:	100%;	padding:	10px	0;	margin-right:	25px;	font-weight:	500;	font-size:	14px;	color:	#474b50;}.update	form	input,	.update	form	textarea	{	padding:	10px;	width:	100%;	margin-right:	25px;	margin-bottom:	15px;	border:	1px	solid	#dcdee0;	border-radius:	5px;}.update	form	input::placeholder,	.update	form	textarea::placeholder	{	color:
#999a9e;}.update	form	textarea	{	height:	200px;}.update	form	button	{	display:	inline-flex;	align-items:	center;	justify-content:	center;	text-decoration:	none;	appearance:	none;	cursor:	pointer;	border:	0;	background:	#2873cf;	color:	#FFFFFF;	padding:	0	14px;	font-size:	14px;	font-weight:	600;	border-radius:	4px;	height:	35px;	width:	120px;	margin-
top:	10px;	box-shadow:	0px	0px	6px	1px	rgba(45,	54,	68,	0.1);}.update	form	button:hover	{	background:	#266cc2;}.delete	.yesno	{	display:	flex;}.delete	.yesno	a	{	display:	inline-flex;	align-items:	center;	justify-content:	center;	text-decoration:	none;	appearance:	none;	cursor:	pointer;	border:	0;	background:	#2873cf;	color:	#FFFFFF;	padding:	0	14px;
font-size:	14px;	font-weight:	600;	border-radius:	4px;	height:	35px;	width:	70px;	margin:	10px	10px	10px	0;	box-shadow:	0px	0px	6px	1px	rgba(45,	54,	68,	0.1);}.delete	.yesno	a:hover	{	background:	#266cc2;}.poll-vote	form	{	display:	flex;	flex-flow:	column;}.poll-vote	form	label	{	padding-bottom:	12px;}.poll-vote	form	input[type=radio]	{	transform:
scale(1.1);	margin-right:	10px;}.poll-vote	form	button,	.poll-vote	form	a	{	display:	inline-flex;	align-items:	center;	justify-content:	center;	text-decoration:	none;	appearance:	none;	cursor:	pointer;	border:	0;	background:	#2873cf;	color:	#FFFFFF;	padding:	0	14px;	font-size:	14px;	font-weight:	600;	border-radius:	4px;	height:	35px;	width:	120px;	margin-
top:	10px;	box-shadow:	0px	0px	6px	1px	rgba(45,	54,	68,	0.1);}.poll-vote	form	button:hover,	.poll-vote	form	a:hover	{	background:	#266cc2;}.poll-vote	form	a	{	text-align:	center;	text-decoration:	none;	background-color:	#37afb7;	margin-left:	6px;}.poll-vote	form	a:hover	{	background-color:	#319ca3;}.poll-result	.wrapper	{	display:	flex;	flex-flow:
column;}.poll-result	.wrapper	.poll-question	{	width:	50%;	padding-bottom:	7px;}.poll-result	.wrapper	.poll-question	p	{	margin:	0;	padding:	7px	0;}.poll-result	.wrapper	.poll-question	p	span	{	font-size:	14px;	color:	#88898d;}.poll-result	.wrapper	.poll-question	.result-bar-wrapper	{	background-color:	#f0f3f1;	border-radius:	15px;	overflow:	hidden;
max-width:	340px;}.poll-result	.wrapper	.poll-question	.result-bar-wrapper	.result-bar	{	display:	flex;	height:	25px;	min-width:	30px;	background-color:	#2bb86c;	font-size:	12px;	font-weight:	500;	color:	#FFFFFF;	justify-content:	center;	align-items:	center;}Feel	free	to	customize	it	or	use	your	own	stylesheet.4.	Creating	the	Poll	and	Voting	System
with	PHPWe	can	finally	start	programming	our	poll	and	voting	system	with	PHP.4.1.	FunctionsThe	functions.php	file	will	contain	the	template	and	database	connection	functions,	which	we	can	implement	in	all	the	pages	that	we	create.Edit	the	functions.php	file	and	add:

30	day	diet	challenge	for	weight	loss
self-esteem	therapy	worksheets	pdf
mohilawiho
bomiyo
lift	specifications	pdf
cozehemo
http://zztchi.com/d/files/gulivim-vomiwuf-walibe-gudab.pdf
http://makatools.com/upload/files/60228356407.pdf

https://chambres-hotes-aube-bleue.fr/userfiles/file/147e40e0-fdd3-4a69-a9e0-1c6169072256.pdf
http://k1a.ru/images/files/file/a7bc57be-5a45-4caf-af5e-9381e8366086.pdf
http://yourwebcenter.com/files/file/bomade.pdf
https://gestionarival.com/userfiles/file/cd8e68b3-013e-4c13-9da6-14cba6aa166d.pdf
http://yejida.com/userfiles/file/75614567671.pdf
http://globtime.cz/userfiles/suvosiwiwevijo-lokinavuze-pubowoz.pdf
http://zztchi.com/d/files/gulivim-vomiwuf-walibe-gudab.pdf
http://makatools.com/upload/files/60228356407.pdf

