
	

https://depajatiwakesa.gonujovux.com/758053531635412381953655470521219348707994?fibaziduledagowubakavufogapavosupiponovuvunifenepegus=kedoxilojupupawudakabekajidakalapekokekaverubegewomirowulomubosipawojonomibozuximipagejulukorudifasupurubekigibukenasamenagolawomevisolagigikirinavomafizinewofodupagikugitafasujibebisulotokananurovuzas&utm_kwd=decision+tree+and+random+forest+interview+questions&mijotoduremigekezipabevatevaminesibipefexuzufajofuwejabatowepumokurotetenofababanozuwagakirevemoluj=mizosixowumojuzumokezikujosukugevakidubegalutusofidemiwonagagalusiralelebopumiminumoxosadorafinibiwifija


















Decision	tree	and	random	forest	interview	questions

Getting	Ready	for	Tree-Based	Algorithms	in	Your	Next	Data	Scientist	InterviewA	5-minute	read	to	master	tree-based	algorithms	for	your	next	interviewWelcome	to	Day	3	of	our	"Data	Scientist	Interview	Prep	GRWM"	series!	Today	we're	diving	into	Decision	Trees	and	Random	Forests,	two	essential	algorithms	that	appear	frequently	in	both	technical
interviews	and	real-world	applications.Let's	tackle	the	most	challenging	tree-based	algorithm	questions	you	might	face:Interview	Questions	&	AnswersQ1:	What	are	the	key	pros	and	cons	of	decision	trees	compared	to	linear	models?A	finance	company	asked	this	question	before:Decision	trees	have	some	advantages	and	disadvantages	compared	to
linear	models:Pros:	Handle	non-linear	relationships	naturally,	no	need	for	data	transformationNo	assumptions	about	data	distribution	(non-parametric)Automatically	handle	feature	interactionsMinimal	data	preprocessing	neededHighly	interpretable,	especially	for	shallow	treesHandle	mixed	data	types	without	encodingCons:	Prone	to	overfitting,
especially	with	deep	treesLack	of	smoothness	(stepwise	predictions	rather	than	continuous)Instability	(small	data	changes	can	significantly	alter	the	tree	structure)Biased	toward	features	with	more	levels	when	handling	categorical	variablesStruggle	with	linear	relationships	(require	many	splits	to	approximate	lines)Limited	extrapolation	capability
outside	the	training	data	rangeFor	example,	predicting	loan	defaults	using	decision	trees	might	automatically	capture	interactions	between	income	and	debt	levels	without	manually	creating	an	interaction	term.Q2:	Explain	the	differences	between	Gini	impurity	and	entropy	as	splitting	criteria	in	decision	trees.A	tech	startup	asked	this	question:Gini
impurity	and	entropy	are	both	metrics	to	evaluate	potential	splits	in	decision	trees,	but	they	have	some	subtle	differences:Gini	Impurity:	Measures	the	probability	of	misclassifying	a	randomly	chosen	element	(Formula:	Gini	=	1	—	Σ(pᵢ²),	where	pᵢ	is	the	probability	of	class	i)Range:	0	(pure	node)	to	0.5	(equal	distribution	in	binary	classification)Generally
faster	to	compute	(no	logarithms)Tends	to	isolate	the	most	frequent	class	in	its	own	branchEntropy:	Measures	the	level	of	randomness	or	uncertainty	(Formula:	Entropy	=	-Σ(pᵢ	×	log₂(pᵢ)))Range:	0	(pure	node)	to	1	(equal	distribution	in	binary	classification)Computationally	more	intensive	(requires	logarithm	calculation)Often	creates	more	balanced
treesIn	practice,	both	metrics	usually	yield	similar	trees,	but	there	are	subtle	differences:Entropy	is	more	sensitive	to	changes	in	node	probabilitiesGini	tends	to	find	the	largest	class,	while	entropy	tries	to	create	more	balanced	splitsFor	instance,	in	a	fraud	detection	model	where	classes	are	imbalanced	(few	fraudulent	transactions),	Gini	might	create
purer	nodes	for	the	majority	class	(non-fraud),	while	entropy	might	better	identify	minority	class	patterns.Q3:	How	does	Random	Forest	prevent	overfitting	compared	to	a	single	decision	tree?An	e-commerce	company	asked	this	question:Random	Forest	prevents	overfitting	through	several	key	mechanisms:Bagging	(Bootstrap	Aggregation):	Each	tree
trains	on	a	random	subset	of	data	(with	replacement)Reduces	variance	by	averaging	predictions	across	multiple	treesTrees	see	different	training	examples,	reducing	correlation	The	Random	Forest	algorithm	combines	multiple	decision	trees	to	improve	accuracy	and	reduce	overfitting.	It	achieves	this	through	ensemble	decision	making,	where	the
final	prediction	is	either	a	majority	vote	(classification)	or	an	average	(regression).	In	contrast	to	individual	decision	trees,	which	can	be	prone	to	overfitting	by	focusing	on	noise,	Random	Forests	aggregate	errors	to	amplify	the	signal.	This	helps	mitigate	issues	like	outliers	dominating	the	model,	as	seen	in	customer	churn	prediction	models.	Feature
importance	is	calculated	using	methods	such	as	Mean	Decrease	in	Impurity	(MDI)	or	Mean	Decrease	in	Accuracy	(MDA),	providing	insights	into	which	features	contribute	most	to	predictive	power.	Decision	trees	and	random	forests	have	several	ways	to	handle	categorical	variables,	including	natural	handling	by	some	algorithms	like	CART	and	C5.0,
one-hot	encoding	which	creates	binary	columns	for	each	category	but	increases	dimensionality,	label	encoding	that	converts	categories	to	integers	but	can	create	artificial	relationships	between	unordered	categories,	target	encoding	that	replaces	categories	with	their	mean	target	value	but	risks	overfitting	if	not	validated,	and	tree-specific	encoding
schemes	like	binary	encoding	or	feature	hashing.	Pruning	in	decision	trees	is	the	process	of	removing	branches	to	reduce	complexity	and	prevent	overfitting	by	removing	branches	that	model	noise	rather	than	true	patterns.	Types	of	pruning	techniques	include	pre-pruning	which	stops	growing	the	tree	before	it	fully	classifies	training	data	based	on
criteria	such	as	maximum	depth,	minimum	samples	required	for	a	split	or	in	a	leaf	node,	post-pruning	which	grows	a	full	tree	then	prunes	back	branches	using	validation	data	to	determine	which	branches	to	remove,	and	reduced	error	pruning	which	recursively	checks	each	non-leaf	subtree	by	replacing	with	the	most	frequent	class	if	accuracy
improves	on	validation	set.	Out-of-bag	(OOB)	error	in	random	forests	is	a	measure	of	model	performance	that	uses	the	OOB	samples	for	calculating	the	error.	It	is	useful	as	it	provides	an	unbiased	estimate	of	the	true	error	rate	and	can	be	used	for	stopping	training	or	selecting	hyperparameters.	Random	Forests	can	measure	prediction	error	without
requiring	a	separate	validation	set,	leveraging	a	technique	called	"out-of-bag"	(OOB)	sampling.	In	OOB,	approximately	one-third	of	data	points	are	left	out	of	each	tree's	training	process,	serving	as	"out-of-bag"	samples.	These	samples	are	then	used	to	predict	the	model's	performance	on	unseen	data.	This	approach	offers	several	benefits,	including
built-in	validation,	computational	efficiency,	and	an	unbiased	estimate	of	the	model's	performance	on	new	data.	It	also	enables	parameter	tuning	without	setting	aside	a	separate	validation	set,	making	it	ideal	for	scenarios	with	limited	data.	OOB	error	can	be	used	to	calculate	permutation	importance,	which	helps	in	understanding	feature
contributions.	For	instance,	when	building	a	Random	Forest	to	predict	customer	lifetime	value	with	limited	data,	OOB	error	facilitates	efficient	parameter	tuning	without	compromising	performance	estimates.	Decision	Trees	for	Efficient	Memory	Usage	and	Improved	Predictive	Performance	XGBoost	is	a	widely	used	machine	learning	algorithm	that
offers	several	advantages	over	traditional	Gradient	Boosting	Machines	(GBM).	These	include	fast	training	times	through	parallelization,	handling	of	missing	impression	data	automatically,	and	prevention	of	overfitting	through	regularization.	Key	features	of	XGBoost	include:	*	Sparse-aware	split	finding	for	datasets	with	missing	values	*	Built-in
handling	of	missing	values	through	learning	the	best	direction	(left	or	right	branch)	for	missing	values	*	Customizable	loss	functions	and	evaluation	metrics	with	built-in	cross-validation	capabilities	*	Advanced	feature	subsets	like	Random	Forests,	both	row	and	column	sampling	to	prevent	overfitting	In	the	context	of	a	click-through	rate	prediction
system	for	online	ads,	XGBoost	has	been	shown	to	outperform	traditional	GBM	by:	*	Training	faster	through	parallelization	*	Handling	missing	impression	data	automatically	*	Preventing	overfitting	through	regularization	*	Finding	more	optimal	splits	through	its	advanced	tree-growing	strategy	These	improvements	have	led	to	better	predictive
performance	and	made	XGBoost	a	dominant	algorithm	in	many	machine	learning	competitions	and	real-world	applications.	Random	Forests	A	machine	learning	ensemble	method	for	classification,	regression,	and	other	tasks	that	uses	multiple	decision	trees	to	correct	overfitting	in	decision	trees,	providing	a	robust	and	accurate	prediction	model.
Random	Forests:	A	Method	Resistant	to	Overfitting	The	common	belief	that	the	complexity	of	a	classifier	cannot	grow	indefinitely	without	suffering	from	overfitting	is	challenged	by	the	forest	method.	According	to	Kleinberg's	theory	of	stochastic	discrimination,	this	method's	resistance	to	overtraining	can	be	attributed	to	its	ability	to	capture	complex
patterns	in	data.	The	development	of	random	forests	was	influenced	by	several	key	ideas.	Amit	and	Geman	introduced	the	concept	of	searching	over	a	random	subset	of	available	decisions	when	splitting	a	node,	while	Ho's	idea	of	random	subspace	selection	also	played	a	crucial	role	in	the	design	of	random	forests.	Thomas	G.	Dietterich's	randomized
node	optimization	added	another	layer	of	complexity	to	this	method.	Leo	Breiman's	paper	is	often	credited	with	introducing	the	proper	use	of	random	forests.	The	technique	combines	a	CART-like	procedure	with	randomized	node	optimization	and	bagging,	allowing	for	the	creation	of	an	ensemble	model	that	incorporates	multiple	uncorrelated	trees.
This	approach	provides	several	benefits,	including	improved	generalization	error	estimation	via	out-of-bag	error,	variable	importance	measurement	through	permutation,	and	a	theoretical	bound	on	the	generalization	error.	In	contrast	to	traditional	decision	tree	learning,	random	forests	offer	a	way	to	mitigate	the	variance	problem	by	averaging
multiple	deep	decision	trees	trained	on	different	parts	of	the	same	training	set.	While	this	approach	may	come	at	the	cost	of	increased	bias	and	reduced	interpretability,	it	often	results	in	significant	performance	improvements.	Bootstrapping	procedure	for	training	classification	or	regression	trees	involves	sampling	with	replacement	from	training	data
to	create	individual	trees.	Each	tree	is	trained	on	its	own	subset	of	the	data	and	then	used	to	make	predictions	on	unseen	samples.	By	averaging	the	predictions	across	multiple	trees,	the	model	performance	improves	due	to	reduced	variance	without	increasing	bias.	This	method	helps	reduce	the	impact	of	noise	in	individual	trees'	training	sets	by	de-
correlating	the	trees	through	different	training	sets.	Randomly	selected	features	are	considered	at	each	node	to	create	locally	optimal	cut-points	based	on	information	gain	or	Gini	impurity.	Uniformly	distributed	values	within	a	feature's	empirical	range	are	chosen	for	training.	The	split	that	yields	the	highest	score	from	randomly	generated	options	is
then	chosen	to	split	nodes.	In	situations	where	there	are	many	features	but	only	a	few	are	informative,	methods	like	prefiltering	and	enriched	random	forests	can	be	used	to	focus	on	important	features.	Random	forests	can	also	rank	variable	importance	in	regression	or	classification	problems	by	training	a	forest	and	calculating	the	difference	in	out-of-
bag	error	before	and	after	permuting	feature	values.	This	score	is	normalized	by	the	standard	deviation	of	differences	and	features	with	larger	scores	are	ranked	as	more	important.	However,	this	method	has	drawbacks	like	favoring	features	with	more	values	and	failing	to	identify	important	features	due	to	collinear	variables.	To	address	these	issues,
solutions	such	as	partial	permutations	and	growing	unbiased	trees	can	be	employed.	The	definition	of	unormalized	average	importance	(x)	is	given	as:	unormalized	average	importance	(x)	=	1/nT	*	∑i=1nT	*	∑node	j	∈	Ti	|	split	variable	(j)	=	x	*	pTi(j)	*	ΔiTj,	where	x	is	a	feature,	nT	is	the	number	of	trees	in	the	forest,	and	T_i	is	tree	i.	This	measures	the
contribution	of	each	node	to	the	overall	importance	of	the	feature	x.	The	unormalized	average	importance	is	then	normalized	over	all	features,	so	that	the	sum	of	normalized	feature	importances	equals	1.	However,	the	sci-kit	learn	default	implementation	can	provide	misleading	results	by	favoring	high	cardinality	features	and	using	training	statistics,
which	do	not	reflect	a	feature's	usefulness	for	predictions	on	a	test	set.	Random	forests	are	related	to	k-nearest	neighbor	(k-NN)	algorithms,	as	both	can	be	viewed	as	weighted	neighborhood	schemes.	A	random	forest	makes	predictions	by	considering	the	"neighborhood"	of	a	point,	formalized	by	a	weight	function	W.	In	k-NN,	the	weights	are	given	by
1/k	if	a	point	is	one	of	the	k	closest	points	to	the	new	point,	and	zero	otherwise.	In	contrast,	in	a	tree-based	model,	the	weights	are	given	by	1/k'	if	a	point	shares	the	same	leaf	as	the	new	point,	and	zero	otherwise.	When	multiple	trees	are	averaged	together,	their	predictions	are	combined	using	the	average	weight	function	W_j.	This	results	in	a
weighted	neighborhood	scheme,	where	the	whole	forest	is	viewed	as	a	single	weighted	neighborhood.	The	neighbors	of	a	point	depend	on	the	structure	of	the	trees	and	the	training	set,	and	thus	can	be	complex	to	interpret.	Lin	and	Jeon	showed	that	the	shape	of	the	neighborhood	used	by	random	forests	adapts	to	the	local	importance	of	each	feature,
which	suggests	that	random	forests	are	capable	of	capturing	more	nuanced	relationships	between	features.	Random	Forest	Dissimilarity	Measures:	A	Robust	and	Attractive	Alternative	A	random	forest	dissimilarity	measure	can	be	defined	to	analyze	observations,	handling	mixed	variable	types,	monotonic	transformations,	and	outlying	observations
effectively.	This	method	is	robust	to	semi-continuous	variables	and	has	been	successfully	applied	in	various	fields,	including	patient	clustering	based	on	tissue	marker	data.	Random	forests	have	been	evaluated	as	base	estimators	using	linear	models,	such	as	multinomial	logistic	regression	and	naive	Bayes	classifiers,	which	may	achieve	comparable
accuracy	to	the	ensemble	learner	in	cases	with	a	linear	relationship	between	predictors	and	the	target	variable.	Kernel	random	forests	(KeRF)	establish	a	connection	between	random	forests	and	kernel	methods,	offering	more	interpretable	and	easier-to-analyze	results.	These	simplified	models	of	random	forest,	Centered	KeRF	and	Uniform	KeRF,
provide	explicit	expressions	for	kernels	based	on	centered	and	uniform	random	forest	estimates,	respectively,	and	have	been	proven	to	achieve	certain	consistency	rates.	The	goal	is	to	predict	the	response	variable	Y,	associated	with	the	random	variable	X,	by	estimating	the	regression	function	m(x)	=	E[Y|X=x].	A	random	regression	forest	is	an
ensemble	of	M	randomized	regression	trees.	Each	tree	predicts	a	value	at	point	x	based	on	random	variables	Θ1,...,ΘM.	The	trees	are	combined	to	form	the	finite	forest	estimate	mMN(x,	Θ1,...,ΘM).	For	each	tree,	the	predicted	value	mn(x,	Θj)	is	calculated	as	the	weighted	average	of	Y	values	in	cells	containing	x,	where	the	weights	are	proportional	to
the	number	of	observations	in	those	cells.	The	random	forest	method	has	two	levels	of	averaging:	first	over	samples	within	a	cell	and	then	over	all	trees.	This	means	that	observations	in	dense	cells	contribute	less	than	those	in	sparse	cells.	To	improve	the	accuracy	of	the	random	forest	method,	Scornet	proposed	KeRF	(Kernelized	Random	Forest),
which	is	defined	as:	m~MN(x,	Θ1,...,ΘM)	=	1/Σj=1M	Nn(x,	Θj)	Σj=1M	∑i=1	n	Y	i	1X	i	∈	An(x,	Θj)	This	is	equivalent	to	the	mean	of	Y	values	falling	in	cells	containing	x.	The	connection	function	of	the	M	finite	forest	is	defined	as	KM,n(x,z).	The	KeRF	(Kernel-based	Random	Forest)	is	defined	as	the	proportion	of	cells	shared	between	two	points,	x	and	z.
The	almost	sure	convergence	of	the	random	forest	to	the	infinite	random	forest	is	established.	The	construction	of	Centered	KeRF	of	level	k	involves	predicting	by	the	corresponding	kernel	function,	which	is	Kkc(x,z)	=	∑k1,...,kd∑j=1dk!k!(1/d)kk1!⋯kd!(1⌈2kjxj⌉=⌈2kjzj⌉).	The	Uniform	KeRF	is	built	similarly,	except	the	kernel	function	is
Kku(x)=∑k1,...,d∑j=1dk!k!(1/d)kk1!⋯kd!(1−|xm|∑j=0km−1(−ln|xm|)jj!).	The	predictions	given	by	KeRF	and	random	forests	are	close	if	the	number	of	points	in	each	cell	is	controlled.	Specifically,	if	there	exist	sequences	(an),(bn)	such	that	almost	surely	an≤Nn(x,Θ)≤bn	and	an≤1M∑m=1MNn,x,Θm≤bn,	then	almost	surely	|mn(x)−~mn(x)|
≤bn−ana~/mn(x).	Finally,	the	infinite	random	forest	and	infinite	KeRF	are	established.	Their	estimates	are	close	if	the	number	of	observations	in	each	cell	is	bounded.	Specifically,	if	there	exist	sequences	(εn),(an),(bn)	such	that	almost	surely	E[Nn(x,Θ)]≥1,	P[an≤Nn(x,Θ)≤bn∣Dn]≥1−εn/2,	then	the	estimates	are	close.	Let	me	know	if	you'd	like	me	to
clarify	any	part	of	this	paraphrased	text!	Given	text	here:	For	a	certain	dataset,	it	was	established	that	[a_{n}\leq	N_{n}(\mathbf	{x}	,\Theta	)\leq	b_{n}\mid	{\mathcal	{D}}_{n}]\geq	1-\varepsilon	_{n}/2.	This	implies	that	almost	surely,	the	difference	between	m	∞	,	n	(	x	)	and	m	~	∞	,	n	(	x	)	is	bounded	by	[b_n-a_n]/a_n	times	m	~	∞	,	n	(x)	plus	n	ε	n
(max	1	≤	i	≤	n	Y	i).	It	was	also	assumed	that	Y	=	m	(	X	)	+	ε,	where	ε	is	a	centered	Gaussian	noise	with	finite	variance	σ	2	<	∞.	Additionally,	X	is	uniformly	distributed	on	[0,1]	d	and	m	is	Lipschitz.	Scornet	showed	upper	bounds	for	the	rates	of	consistency	for	certain	types	of	kernel	regression	forests.	In	particular,	it	was	demonstrated	that	for	k	→	∞
and	n/2^k	→	∞,	there	exists	a	constant	C	1	>	0	such	that	E	[m	~	n	c	c	(	X	)	-	m	(	X	)	]	2	≤	C	1	n	^{-1/(3+d	log	2)}(log	n)^{2}.	Similarly,	for	k	→	∞	and	n/2^k	→	∞,	there	exists	a	constant	C	>	0	such	that	E	[m	~	n	u	f	(	X	)	-	m	(	X	)	]	2	≤	C	n	^{-2/(6+3d	log	2)}(log	n)^{2}.	While	random	forests	can	achieve	higher	accuracy	than	decision	trees,	they	lose
the	interpretability	of	decision	trees.	Decision	trees	are	one	of	the	few	machine	learning	models	that	are	easily	interpretable,	along	with	linear	models,	rule-based	models,	and	attention-based	models.	This	interpretability	is	an	advantage	of	decision	trees,	allowing	developers	to	confirm	that	the	model	has	learned	realistic	information	from	the	data	and
end-users	to	trust	the	decisions	made	by	the	model.	For	example,	tracing	the	path	taken	by	a	decision	tree	is	straightforward,	but	tracing	tens	or	hundreds	of	paths	becomes	more	challenging.	To	balance	performance	and	interpretability,	some	techniques	allow	transforming	a	random	forest	into	a	minimal	"born-again"	decision	tree	that	faithfully
reproduces	the	same	decision	function.	Another	limitation	of	random	forests	is	that	if	features	are	linearly	correlated	with	the	target,	the	model	may	not	enhance	the	accuracy	of	the	base	learner.	This	is	also	true	for	problems	with	multiple	categorical	variables.	**Types	of	Statistical	Analysis**	*	**Randomized	Algorithm**:	A	type	of	algorithm	that
incorporates	randomness	into	its	logic	or	procedure.	*	**Decision	Forests**:	A	collection	of	decision	trees	used	for	classification	and	regression	tasks.	**History	of	Decision	Forests**	*	The	concept	of	decision	forests	was	first	introduced	by	Tin	Kam	Ho	in	1995,	who	developed	the	Random	Decision	Forests	algorithm	(Ho,	1995).	*	Ho's	work	built	on
earlier	research	by	Edith	Kleinberg,	who	proposed	a	stochastic	discrimination	method	for	pattern	recognition	(Kleinberg,	1990).	**Key	Papers	and	Researchers**	*	Ho's	1998	paper	"The	Random	Subspace	Method	for	Constructing	Decision	Forests"	is	considered	a	seminal	work	in	the	field	(Ho,	1998).	*	Trevor	Hastie,	Robert	Tibshirani,	and	Jerome
Friedman	wrote	an	influential	book	on	statistical	learning	that	covers	decision	forests	(Hastie	et	al.,	2008).	*	Other	notable	researchers	include	Edith	Kleinberg,	who	developed	stochastic	discrimination	methods	for	pattern	recognition	(Kleinberg,	1996),	and	Luciano	Wehenkel,	who	developed	extremely	randomized	trees	(Geurts	et	al.,	2006).
**Software	Implementations**	*	The	R	package	"randomForest"	provides	an	implementation	of	decision	forests	in	the	R	programming	language	(Liaw,	2012).	*	Other	software	implementations	include	scikit-learn	for	Python	and	caret	for	R.	**Applications	and	Variations**	*	Decision	forests	have	been	used	in	various	applications,	including	image
classification,	text	categorization,	and	microarray	data	analysis.	*	Researchers	have	also	developed	variations	of	decision	forests,	such	as	extremely	randomized	trees	(Geurts	et	al.,	2006)	and	random	subspace	method	(Ho,	1998).	The	concept	of	random	forests	has	been	extensively	researched	and	applied	in	various	fields,	including	bioinformatics,
machine	learning,	and	data	analysis.	The	technique	involves	training	multiple	decision	trees	on	subsets	of	the	feature	set	to	improve	accuracy	and	robustness.	One	key	aspect	of	random	forests	is	feature	weighting,	which	assigns	different	importance	weights	to	each	feature	based	on	its	contribution	to	the	model's	performance.	Researchers	have
developed	various	methods	for	feature	weighting,	including	weighted	random	forests	(Li	et	al.,	2008)	and	permutation	importance	(Altmann	et	al.,	2010).	Other	studies	have	explored	ways	to	improve	predictive	performance	in	classification	and	regression	problems	using	tree-based	methods.	For	example,	Winham	et	al.	(2013)	proposed	a	weighted
random	forest	approach,	while	Zhu	et	al.	(2015)	developed	the	concept	of	"Reinforcement	Learning	Trees."	Importance	measures	for	multi-valued	attributes	have	also	been	studied,	with	researchers	finding	that	traditional	importance	measures	can	be	biased.	Deng	et	al.	(2011)	addressed	this	issue	by	developing	new	importance	measures.	In	addition
to	feature	weighting	and	importance	measures,	research	has	focused	on	improving	the	performance	of	tree-based	models	in	high-dimensional	data	settings.	For	instance,	Piryonesi	and	El-Diraby	(2020)	explored	the	role	of	data	analytics	in	infrastructure	asset	management,	while	Strobl	et	al.	(2007)	developed	an	unbiased	split	selection	method	for
classification	trees.	Recent	studies	have	also	highlighted	the	importance	of	permutation	importance	as	a	feature	importance	measure,	with	researchers	finding	that	it	can	be	more	reliable	than	traditional	measures.	Painsky	and	Rosset	(2017)	demonstrated	its	effectiveness	in	cross-validated	variable	selection.	Overall,	the	research	on	random	forests
has	expanded	our	understanding	of	tree-based	models	and	their	applications	in	various	fields,	leading	to	improved	predictive	performance	and	robustness.	A	collection	of	research	papers	and	articles	related	to	Random	Forests,	a	type	of	machine	learning	algorithm.	The	first	paper,	published	in	Modern	Pathology	in	2005,	used	Random	Forests	to
classify	renal	cell	carcinoma	tumors.	The	authors	applied	the	algorithm	to	tissue	microarray	profiling	data	and	found	that	it	was	effective	in	distinguishing	between	different	tumor	types.	In	2021,	a	study	published	in	the	Journal	of	Infrastructure	Systems	used	Machine	Learning	algorithms,	including	Random	Forests,	to	model	the	deterioration	of
flexible	pavements.	The	researchers	found	that	Random	Forests	performed	well	in	predicting	pavement	condition.	Random	Forests	have	also	been	applied	to	other	areas,	such	as	neuroscience	and	climate	modeling.	In	2013,	a	study	published	in	the	Journal	of	Neuroscience	Methods	compared	Random	Forest	regression	with	multiple	linear	regression
for	prediction	tasks.	The	authors	found	that	Random	Forests	performed	better.	In	addition	to	its	applications,	the	algorithm	itself	has	been	studied	extensively.	A	paper	published	in	arXiv	in	2015	analyzed	the	relationship	between	Random	Forests	and	kernel	methods.	Another	study,	also	published	in	arXiv	in	2014,	investigated	the	bias	of	purely
random	forests.	The	theory	behind	Random	Forests	has	been	developed	by	several	researchers.	Breiman,	a	pioneer	in	the	field,	wrote	a	technical	report	in	2000	on	some	infinity	theory	for	predictor	ensembles.	Ghahramani	and	Davies	later	built	upon	this	work,	publishing	papers	on	the	Random	Forest	kernel	and	big	data	from	random	partitions.	More
recently,	research	has	focused	on	explaining	and	interpreting	the	decisions	made	by	Random	Forests.	In	2020,	a	study	published	in	Information	Fusion	developed	an	explainable	decision	forest,	which	transformed	a	decision	forest	into	an	interpretable	tree.	Overall,	this	collection	of	papers	demonstrates	the	versatility	and	effectiveness	of	Random
Forests	as	a	machine	learning	algorithm.	Random	Forest	Interaction	Paraphrase	Interaction	in	Random	Forests.	A	study	published	in	the	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	America	(PNAS)	explored	this	topic.	The	paper's	findings	were	later	referenced	by	other	sources,	including	a	classification	and	regression
article	on	random	forest	classifier,	described	by	Leo	Breiman.	This	concept	is	also	discussed	in	R	News,	which	highlights	the	use	of	the	random	forest	package	for	R.


