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The	air	outside	an	IB	exam	room	after	the	final	paper	feels	different.	Its	a	potent	mix	of	exhaustion,	relief,	Certain	objects	move	in	a	way	that	is	characteristically	rhythmic	and	repeating,	without	resulting	in	any	net	displacement.	These	objects	move	back	and	forth	around	a	fixed	position	until	friction	or	air	resistance	causes	the	motion	to	stop,	or	the
moving	object	is	given	a	fresh	"dose"	of	external	force.Examples	include	a	child	on	a	swing,	a	bungee	jumper	bouncing	up	and	down,	a	spring	pulled	downward	by	a	gravity,	the	pendulum	of	a	clock,	and	the	bored	toddler's	game	of	holding	a	ruler	in	one	hand,	pulling	the	top	to	one	side,	and	releasing	it	so	that	the	ruler	goes	"boing-boing-boing"	rapidly
back	and	forth	before	stopping	in	the	upright	position.Motion	that	occurs	in	predictable	cycles	is	called	periodic	motion	and	includes	a	special	subtype	called	**simple	harmonic	motion,**	or	SHM.	Simple	harmonic	motion	is	a	special	kind	of	periodic	motion	where	the	restoring	force	depends	directly	on	the	displacement	of	the	object	and	works	in	the
opposite	direction	of	it.	Put	another	way,	the	restoring	force	grows	in	proportion	to	increasing	distance,	meaning	that	the	farther	a	system	gets	from	its	equilibrium	position,	the	harder	it	appears	to	fight	to	restore	it.For	example,	when	you	pull	down	on	a	spring	suspended	vertically	from	above,	this	force	displaces	(stretches)	the	spring	by	a	particular
amount	x;	when	you	release	the	spring,	the	force	arising	from	the	spring's	mechanical	characteristics	pulls	the	spring	back	in	the	opposite	direction	toward	where	it	began.It	may	even	return	to	a	more-compressed	state	than	the	one	in	which	it	started,	bounce	outward	again	and	go	back	and	forth	several	times	until	stopping	in	the	original	resting
position.The	equilibrium	point	or	position	is	that	in	which	the	net	force	is	zero,	so	no	acceleration	is	occurring	then.	(This	is	also	when	kinetic	energy	is	maximized.)At	maximum	displacement,	the	maximum	acceleration	is	achieved.	(This	is	also	when	potential	energy	is	maximized.)A	graph	of	this	displacement	over	time	would	trace	out	a	sinusoidal
curve	of	decreasing	amplitude.	Hooke's	Law,	or	**F	=	**k**x,**	can	be	used	to	describe	simple	harmonic	motion	for	the	examples	here.	The	proportionality	constant	k,	called	the	spring	constant,	depends	on	the	specifics	of	the	system	being	tested.	Look	online	for	making	your	own	spring	for	an	explanation	of	Hooke's	law.Note	that	the	restoring	force
is	always	in	the	opposite	direction	of	the	displacement	x,	explaining	the	negative	sign	in	front	of	k.	For	an	object	hanging	from	a	string,	the	restoring	force	from	tension	would	be	equal	to	the	vertical	component	of	the	force	of	gravity:\(T	=	kx	=	mg\cos{\theta}\)At	any	point	along	the	trajectory,	this	force	can	be	found	with	the	basic	identities	of
trigonometry.	The	time	period	T	required	for	one	complete	oscillation	of	a	mass	on	a	spring	is	given	by:\(T=2\pi	\sqrt{\frac{m}{k}}\)Similarly,	the	frequency	f,	or	number	of	oscillations	per	unit	time	(usually	per	second,	even	if	a	decimal	number),	is	given	by	the	reciprocal	of	this	expression,	which	is:\(f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}\)Thus	the
period	and	frequency	depend	on	the	mass	of	the	object	as	well	as	the	constant	k.	It	can	be	shown	that	the	value	of	k	for	a	classic	simple	pendulum,	in	which	a	mass	m	is	suspended	from	a	string	of	length	L	under	the	influence	of	gravity	is	mg/L	,	where	g	=	9.8	m/s2.What	is	the	period	of	a	pendulum	10	m	long	suspending	a	mass	of	100,000	kg?With	the
substitution	k	=	mg/L,	the	expression	for	T	from	above	becomes:\(T=2\pi	\sqrt{\frac{L}{g}}\)Where	L	=	10.	Thus	the	period	T	is	6.35	s	and	does	not	depend	on	mass,	which	cancels	out	of	the	equation.	(Of	course,	a	very	strong	string	would	be	required	to	withstand	the	tension	in	this	pendulum!)	Beck,	Kevin.	"Simple	Harmonic	Motion:	Definition	&
Equations	(W/	Diagrams	&	Examples)"	sciencing.com,	.	28	December	2020.	APA	Beck,	Kevin.	(2020,	December	28).	Simple	Harmonic	Motion:	Definition	&	Equations	(W/	Diagrams	&	Examples).	sciencing.com.	Retrieved	from	Chicago	Beck,	Kevin.	Simple	Harmonic	Motion:	Definition	&	Equations	(W/	Diagrams	&	Examples)	last	modified	March	24,
2022.	Explore	the	fundamentals	of	Simple	Harmonic	Motion	(SHM),	its	principles,	equations,	and	real-world	applications	in	physics	and	engineering.Understanding	Simple	Harmonic	Motion	(SHM)Simple	Harmonic	Motion	(SHM)	is	a	type	of	periodic	motion	or	oscillation	motion	where	the	restoring	force	is	directly	proportional	to	the	displacement	and
acts	in	the	direction	opposite	to	that	of	displacement.	SHM	is	fundamental	to	the	study	of	waves,	sound,	and	other	vibratory	phenomena	in	physics.Basic	Principles	of	SHMThe	most	classical	example	of	SHM	is	the	motion	of	a	mass	attached	to	a	spring.	When	displaced	from	its	equilibrium	position,	the	mass	experiences	a	restoring	force	F	which	is
proportional	to	the	displacement	x,	according	to	Hookes	Law:	F	=	-kx.	Here,	k	is	the	spring	constant,	and	x	is	the	displacement.	The	negative	sign	indicates	that	the	force	acts	in	the	direction	opposite	to	the	displacement.Equations	of	Motion	in	SHMThe	motion	of	a	simple	harmonic	oscillator	can	be	described	by	the	following	differential	equation:\[
\frac{d^2x}{dt^2}	+	\omega^2x	=	0	\]where	\(\omega\)	(omega)	is	the	angular	frequency	of	the	motion.	This	differential	equation	has	solutions	that	can	be	represented	as:\[	x(t)	=	A	\cos(\omega	t	+	\phi)	\]Here,	A	is	the	amplitude	of	the	motion,	\(\omega	t	+	\phi\)	is	the	phase,	and	\(\phi\)	is	the	phase	constant.	The	velocity	and	acceleration	in	SHM
can	also	be	described	using	similar	sinusoidal	functions.Energy	in	SHMIn	SHM,	energy	oscillates	between	kinetic	and	potential	forms.	The	total	mechanical	energy	E	in	SHM	is	constant	and	is	given	by:\[	E	=	\frac{1}{2}	kA^2	\]where	A	is	the	amplitude.	At	maximum	displacement,	the	energy	is	all	potential,	and	at	the	equilibrium	position,	it	is	all
kinetic.Analysis	of	SHMSHM	provides	an	idealized	model	for	understanding	vibrational	systems.	Real-world	systems	often	deviate	from	perfect	SHM	due	to	factors	like	damping	and	external	forces.	However,	SHM	is	crucial	for	understanding	the	fundamental	concepts	in	wave	motion,	resonant	systems,	and	other	areas	of	physics.Further	analysis
involves	exploring	the	effects	of	damping,	forced	vibrations,	and	resonance	in	systems	exhibiting	SHM.Damping	and	Forced	Vibrations	in	SHMIn	real-world	scenarios,	SHM	is	often	influenced	by	non-ideal	factors	such	as	damping	and	external	forces.	Damping	is	a	force	that	opposes	the	motion	and	reduces	the	amplitude	over	time.	Its	often
proportional	to	the	velocity	and	can	be	represented	as:\[	F_d	=	-b\frac{dx}{dt}	\]where	b	is	the	damping	coefficient.	In	the	presence	of	damping,	the	system	loses	energy,	leading	to	a	gradual	decrease	in	amplitude.Resonance	in	SHMResonance	occurs	when	an	external	force	applied	to	a	system	matches	its	natural	frequency,	resulting	in	a	significant
increase	in	amplitude.	The	resonance	phenomenon	is	crucial	in	many	applications,	including	musical	instruments,	bridges,	and	building	design.	Its	crucial	to	understand	and	control	resonance	in	engineering	to	avoid	catastrophic	failures.Applications	of	SHMSHM	finds	applications	in	various	fields.	In	engineering,	its	used	in	the	design	of	structures
and	machinery	parts	that	experience	oscillations.	In	electronics,	oscillators	that	use	SHM	principles	are	fundamental	in	radios,	clocks,	and	computers.	In	quantum	mechanics,	the	harmonic	oscillator	model	helps	understand	atomic	and	molecular	vibrations.ConclusionSimple	Harmonic	Motion	is	a	cornerstone	concept	in	physics,	providing	a	foundation
for	understanding	oscillatory	motion	and	waves.	Its	principles	are	not	only	fundamental	in	theoretical	physics	but	also	immensely	practical	in	various	engineering	and	scientific	applications.	From	the	basic	understanding	of	springs	and	pendulums	to	the	intricate	design	of	electronic	circuits	and	structural	engineering,	SHM	continues	to	be	a	key
concept,	enriching	our	understanding	of	the	natural	and	technological	world.	Its	simplicity	in	form	yet	complexity	in	application	makes	it	a	fascinating	and	essential	area	of	study	in	physics	and	engineering.You	need	to	enable	JavaScript	to	access	Isaac	Physics.	Long	ago,	in	the	early	1600s,	a	curious	scientist	named	Galileo	Galilei	made	an	unusual
observation	inside	a	large	cathedral	in	Italy.	As	he	sat	watching	a	chandelier	swinging	gently	from	the	ceiling,	he	noticed	something	fascinating	the	time	it	took	for	the	chandelier	to	swing	back	and	forth	remained	nearly	the	same,	even	as	the	swing	became	smaller.	This	caught	his	attention.	Using	nothing	more	than	his	own	pulse	to	measure	time,
Galileo	began	to	understand	that	this	regular,	repetitive	motion	had	a	pattern.	Though	he	didnt	yet	call	it	simple	harmonic	motion,	Galileo	had	stumbled	upon	one	of	the	most	important	principles	in	physics	periodic	motion.	Galileos	interest	didnt	stop	there.	He	experimented	further	with	pendulums	and	found	that	for	small	swings,	the	time	period
depends	only	on	the	length	of	the	pendulum	and	not	on	how	far	it	swings.	This	idea	became	the	foundation	for	using	pendulums	in	clocks,	bringing	more	accuracy	to	timekeeping	than	ever	before.	For	the	first	time	in	history,	scientists	were	beginning	to	measure	time	using	natures	rhythm.	A	few	decades	later,	another	brilliant	mind,	Robert	Hooke,
entered	the	scene.	He	was	fascinated	by	springs	and	elasticity.	In	1676,	Hooke	discovered	that	the	force	needed	to	stretch	or	compress	a	spring	is	directly	proportional	to	the	displacement.	He	summarized	this	idea	with	a	simple	but	powerful	equation:	F	=	-kx	This	was	called	Hookes	Law,	and	it	introduced	the	concept	of	a	restoring	force	a	force	that
always	pulls	an	object	back	toward	its	original	position.	Though	Hooke	was	not	directly	talking	about	SHM,	his	discovery	laid	the	mechanical	groundwork	for	it.	The	idea	that	a	system	could	continuously	be	pulled	back	toward	equilibrium	set	the	stage	for	understanding	oscillations	more	deeply.	Then	came	Isaac	Newton,	the	father	of	classical	physics.
In	his	monumental	work	Principia	Mathematica	(published	in	1687),	Newton	provided	the	laws	of	motion	and	applied	them	to	various	physical	systems.	He	used	calculus	to	explain	how	objects	move	and	accelerate.	When	Newton	looked	at	systems	like	pendulums	and	springs,	he	connected	the	ideas	of	force	and	acceleration.	He	showed
mathematically	that	when	a	particle	is	pulled	back	by	a	force	proportional	to	its	displacement	(like	Hooke	described),	the	particle	undergoes	simple	harmonic	motion.	This	was	a	turning	point	now	SHM	wasnt	just	an	observation	or	an	experiment.	It	was	a	motion	that	could	be	described	precisely	using	mathematics	and	physics	laws.	As	time	passed
and	the	1800s	approached,	another	great	mind,	Jean-Baptiste	Joseph	Fourier,	took	the	study	of	motion	even	further.	Fourier	showed	that	any	repeating	(periodic)	motion,	no	matter	how	complex,	could	be	broken	down	into	simple	sine	and	cosine	waves	the	very	functions	that	describe	SHM.	This	was	revolutionary.	Whether	it	was	the	vibration	of	a
violin	string,	the	sound	of	someones	voice,	or	ripples	in	water,	they	could	all	be	analyzed	using	simple	harmonic	components.	His	work	connected	SHM	not	just	to	mechanics,	but	to	music,	sound,	and	light	shaping	entire	fields	like	acoustics	and	signal	processing.	As	we	moved	into	the	20th	century,	the	concept	of	SHM	became	even	more	powerful.
Scientists	realized	that	molecules	vibrate	in	SHM	patterns,	that	electrons	oscillate	in	atoms,	and	that	radio	waves	travel	as	electromagnetic	oscillations.	Even	buildings	and	bridges	were	analyzed	for	resonance,	which	is	directly	linked	to	SHM	engineers	needed	to	be	sure	that	a	building	wouldnt	collapse	if	its	natural	frequency	matched	the	vibrations
caused	by	wind	or	an	earthquake.	One	famous	example	is	the	Tacoma	Narrows	Bridge	in	the	USA,	which	collapsed	in	1940.	The	bridge	started	swaying	violently	because	strong	winds	matched	the	bridges	natural	frequency	a	deadly	demonstration	of	resonance,	a	direct	application	of	SHM.	Periodic	Motion:	This	is	any	motion	that	repeats	itself	at
regular	intervals	of	time.	Examples	include	uniform	circular	motion,	the	orbital	motion	of	planets,	or	even	the	bouncing	of	a	ball	between	your	hand	and	the	ground	(though	the	graph	of	its	height	versus	time	might	look	a	bit	different).	The	smallest	interval	of	time	after	which	the	motion	repeats	is	called	its	period	(T).	Its	SI	unit	is	the	second.
Frequency	():	This	is	the	reciprocal	of	the	period	(T)	and	represents	the	number	of	repetitions	that	occur	per	unit	time.	The	relationship	is	=	1/T.	The	unit	of	frequency	is	s,	also	called	hertz	(Hz),	where	1	Hz	=	1	oscillation	per	second.	Frequency	is	not	necessarily	an	integer.	Oscillatory	Motion:	This	is	a	type	of	periodic	motion	where	an	object	moves	to
and	fro	about	a	mean	position.	This	mean	position	is	often	an	equilibrium	position	where	no	net	external	force	acts	on	the	body.	If	displaced	slightly	from	this	position,	a	force	tries	to	bring	the	body	back,	causing	oscillations	or	vibrations.	Examples	include	a	pendulum	of	a	wall	clock,	a	ball	in	a	bowl,	or	leaves	oscillating	in	the	breeze.	Now,	while	every
oscillatory	motion	is	periodic,	not	every	periodic	motion	needs	to	be	oscillatory.	For	example,	circular	motion	is	periodic	but	not	oscillatory.	SHM	is	described	as	the	simplest	form	of	oscillatory	motion.	The	key	characteristic	defining	SHM	relates	to	the	force	acting	on	the	oscillating	body:	In	SHM,	the	force	on	the	body	is	directly	proportional	to	its
displacement	from	the	mean	position,	which	is	also	the	equilibrium	position.	Furthermore,	this	force	is	always	directed	towards	the	mean	position.	This	type	of	force	is	called	a	restoring	force.	This	force	law	can	be	expressed	mathematically	as	F(t)	=	-k	x(t),	where	F	is	the	force,	x	is	the	displacement	from	the	mean	position,	and	k	is	a	constant.	The
negative	sign	indicates	that	the	force	is	always	opposite	in	direction	to	the	displacement,	pulling	or	pushing	the	particle	back	towards	the	equilibrium	point	(x=0).	A	system	where	the	restoring	force	is	proportional	to	the	displacement	(F	=	-kx)	is	also	referred	to	as	a	linear	harmonic	oscillator.	Mathematical	Description	of	SHM	In	SHM,	the	restoring
force	always	tries	to	bring	the	object	back	to	its	mean	position,	and	is	proportional	to	the	displacement.	\(\displaystyle	F	\propto	-x	\)	The	negative	sign	shows	that	the	direction	of	the	force	is	opposite	to	the	displacement.	Introducing	a	constant	of	proportionality	kk,	we	write:	\(\displaystyle	F	=	-k	x	\tag{1}\)	From	Newtons	second	law	of	motion:	\
(\displaystyle	F	=	m	a	=	m	\frac{d^2x}{dt^2}	\tag{2}\)	Where:	m	=	mass	of	the	object	\(\displaystyle	\frac{d^2x}{dt^2}	\)=	acceleration	Combine	Equations	(1)	and	(2),	Equating	both	expressions	for	force:	\(\displaystyle	m	\frac{d^2x}{dt^2}	=	-k	x\)	Divide	both	sides	by	m:	\(\displaystyle\frac{d^2x}{dt^2}	+	\frac{k}{m}	x	=	0	\tag{3}\)	Let:	\
(\displaystyle\omega^2	=	\frac{k}{m}\)	Now	equation	(3)	becomes:	\(\displaystyle	\frac{d^2x}{dt^2}	+	\omega^2	x	=	0	\tag{4}\)	This	is	the	standard	differential	equation	of	SHM.	General	Solution	of	the	Differential	Equation,	The	solution	of	this	second-order	differential	equation	is:	\(\displaystyle	x(t)	=	A	\cos(\omega	t)	+	B	\sin(\omega	t)	\tag{5}\)
Where:	A	and	B	are	constants	(depend	on	initial	conditions)	\(\displaystyle\omega\)	=	angular	frequency	t	=	time	This	is	the	general	form	of	SHM.	Express	in	a	Single	Cosine	Function,	Using	trigonometric	identity,	this	expression	can	also	be	written	as:	\(\displaystyle	x(t)	=	C	\cos(\omega	t	+	\phi)	\tag{6}\)	Where:	C	=	amplitude	=	\(\displaystyle
\sqrt{A^2	+	B^2}\)	\(\displaystyle	\phi	\)=	phase	constant	=	\(\displaystyle\tan^{-1}	\left(	-\frac{B}{A}	\right)\)	Final	Equation	of	SHM,	\(\displaystyle	x(t)	=	A	\cos(\omega	t	+	\phi)\)	Where:	x(t)	=	displacement	at	time	tt	A	=	amplitude	=	angular	frequency	=\(\displaystyle\sqrt{\frac{k}{m}}\)	=	phase	constant	The	displacement	of	a	particle
undergoing	linear	simple	harmonic	motion	can	be	represented	by	a	sinusoidal	function	of	time.	One	common	form	is:	x(t)	=	A	cos	(t	+	)	x(t):	This	is	the	displacement	of	the	particle	from	its	equilibrium	position	at	a	given	time	t.	Displacement	here	is	used	in	a	general	sense,	referring	to	the	change	in	the	physical	property	under	consideration	over	time,
not	just	position.	It	can	take	both	positive	and	negative	values.	A:	This	is	the	Amplitude	of	the	motion.	It	is	a	positive	constant	representing	the	magnitude	of	the	maximum	displacement	of	the	particle	in	either	direction	from	the	mean	position.	(t	+	):	This	entire	quantity	is	called	the	phase	of	the	motion.	It	describes	the	state	of	motion	at	a	given	time.	:
This	is	the	phase	constant	(or	phase	angle).	Its	a	constant	value	that	depends	on	the	initial	conditions	of	the	motion	(displacement	and	velocity	at	t=0).	It	signifies	the	initial	conditions.	:	This	is	the	angular	frequency	of	the	motion.	It	is	related	to	the	period	T	by	the	equation	=	2/T.	Its	SI	unit	is	radians	per	second.	The	angular	frequency	is	also	related
to	the	spring	constant	(k)	and	mass	(m)	in	a	linear	oscillator	by	=	(k/m).	The	function	f(t)	=	A	cos(t	+	)	is	periodic	with	period	T	=	2/.	Similarly,	f(t)	=	A	sin(t)	or	a	linear	combination	like	f(t)	=	A	sin(t)	+	B	cos(t)	are	also	periodic	with	the	same	period	T.	Notably,	any	periodic	function	can	be	expressed	as	a	superposition	of	sine	and	cosine	functions	of
different	time	periods.	Velocity	in	SHM	In	simple	harmonic	motion	(SHM),	an	object	moves	back	and	forth	around	a	central	point	(called	the	mean	position).	You	already	know	that	its	displacement	changes	with	time	in	a	wave-like	pattern.	But	how	fast	does	it	move	at	each	point?	Thats	where	velocity	comes	in	and	it	behaves	in	a	very	interesting	way.
Lets	say	you	have	a	mass	attached	to	a	spring,	and	you	pull	it	to	one	side	and	release	it.	The	mass	starts	oscillating	moving	to	and	fro.	When	the	mass	reaches	the	end	points	(maximum	displacement,	or	amplitude),	it	stops	for	a	moment	before	reversing	direction.	That	means	its	velocity	is	zero	at	the	extreme	positions.	As	it	starts	coming	back	towards
the	center,	it	speeds	up.	At	the	mean	position,	the	object	is	moving	the	fastest.	So,	in	SHM:	Velocity	is	maximum	at	the	mean	position	Velocity	is	zero	at	the	extreme	positions	We	already	know	that	in	SHM,	displacement	is	given	by:	\(\displaystyle	x(t)	=	A	\cos(\omega	t	+	\phi)\)	To	find	velocity,	we	take	the	derivative	of	displacement	with	respect	to
time:	\(\displaystyle	v(t)	=	\frac{dx}{dt}	=	-A	\omega	\sin(\omega	t	+	\phi)\)	So,	the	equation	for	velocity	becomes:	\(\displaystyle	v(t)	=	-\omega	A	\sin(\omega	t	+	\phi)\)	This	tells	us	how	velocity	varies	with	time.	The	negative	sign	shows	that	the	direction	of	velocity	is	opposite	to	that	of	displacement	when	moving	toward	the	mean	position.	Velocity	in
terms	of	displacement:	Using	energy	conservation	and	trigonometry,	we	can	also	write	velocity	as:	\(\displaystyle	v	=	\omega	\sqrt{A^2	x^2}\)	This	form	helps	us	understand	that	velocity	depends	on	how	far	the	particle	is	from	the	mean	position.	When	x	=	A	or	-A,	velocity	is	0.	When	x	=	0,	velocity	is	maximum,	\(\displaystyle	v_{\text{max}}	=
\omega	A\)	Graphical	Understanding	Displacement,	Velocity	and	acceleration	in	SHM.	Interpretation	of	the	Graphs:	The	displacement	graph	is	a	cosine	wave.	The	velocity	graph	is	a	sine	wave	(with	negative	sign).	Notice	that	the	velocity	wave	is	shifted	by	a	quarter	cycle	(/2	radians)	from	the	displacement	wave.	At	the	peak	of	displacement,	velocity	is
zero.	At	zero	displacement	(mean	position),	velocity	is	maximum.	Physical	Meaning:	Lets	relate	this	to	real	life.	Imagine	pushing	a	child	on	a	swing:	At	the	highest	point	(extreme	position),	the	child	momentarily	stops	zero	velocity.	As	they	come	down	toward	the	center,	they	speed	up	velocity	increases.	At	the	bottom	(mean	position),	theyre	moving	the
fastest	maximum	velocity.	Then,	as	they	rise	again,	they	slow	down	velocity	decreases	and	becomes	zero	at	the	next	extreme.	This	is	exactly	how	velocity	behaves	in	SHM.	The	instantaneous	velocity	v(t)	of	a	particle	in	SHM	is	given	by	the	first	derivative	of	the	displacement	x(t):	v(t)	=	-A	sin	(t	+	)	The	maximum	speed	(velocity	amplitude)	is	vm	=	A.
The	velocity	of	the	oscillating	particle	varies	between	A.	The	velocity	lags	behind	the	displacement	by	a	phase	angle	of	/2.	Velocity	is	zero	at	the	extreme	positions	(maximum	displacement)	and	maximum	when	the	particle	is	at	the	mean	position	(zero	displacement).	Acceleration	in	SHM	When	we	talk	about	motion,	we	usually	think	about	how	fast
something	moves	thats	velocity.	But	in	simple	harmonic	motion	(SHM),	theres	another	important	aspect	to	understand:	acceleration.	In	SHM,	acceleration	plays	a	special	role	because	it	is	directly	responsible	for	the	motion.	Lets	imagine	a	mass	hanging	from	a	spring,	or	a	pendulum	swinging	from	side	to	side.	These	objects	go	back	and	forth
repeatedly	they	oscillate.	At	every	moment,	theres	a	force	acting	on	them	that	tries	to	pull	them	back	toward	the	central	position,	called	the	mean	position.	This	force	is	called	a	restoring	force,	and	it	is	always	trying	to	bring	the	object	back	to	equilibrium.	Now,	according	to	Newtons	Second	Law,	force	causes	acceleration:	F	=	ma.	But	in	SHM,	the
force	itself	depends	on	how	far	the	object	is	from	the	center.	Thats	given	by:	F	=	-kx	Combining	these	two,	we	get:	\(\displaystyle	ma	=	-kx	\quad	\Rightarrow	\quad	a	=	-\frac{k}{m}x\)	We	introduce	angular	frequency	;	where:	\(\displaystyle\omega^2	=	\frac{k}{m}\)	Now,	we	can	write	the	acceleration	in	SHM	as:	\(\displaystyle	a(t)	=	-\omega^2
x(t)\)	This	equation	tells	us	two	very	important	things:	Acceleration	is	directly	proportional	to	displacement	if	you	double	the	displacement,	acceleration	doubles.	The	negative	sign	means	the	direction	of	acceleration	is	always	opposite	to	displacement	if	the	object	is	to	the	right,	the	acceleration	is	to	the	left.	What	does	this	mean	during	motion?	When
the	object	is	at	the	maximum	displacement	(farthest	from	center),	the	acceleration	is	maximum	because	its	being	pulled	back	strongly.	When	the	object	passes	through	the	mean	position,	the	displacement	is	zero,	so	acceleration	is	also	zero.	Thats	because	no	force	is	acting	to	pull	it	back	at	that	exact	moment	but	its	moving	the	fastest	here!	As	it
moves	to	the	opposite	side,	the	acceleration	changes	direction,	still	pointing	toward	the	center.	So,	acceleration	in	SHM	is	like	a	push	that	gets	stronger	as	the	object	moves	away	from	the	center,	and	reverses	direction	every	time	the	object	crosses	the	mean	position.	The	instantaneous	acceleration	a(t)	is	given	by	the	first	derivative	of	the	velocity	v(t)
or	the	second	derivative	of	the	displacement	x(t):	a(t)	=	-A	cos	(t	+	)	Substituting	x(t)	=	A	cos(t	+	),	we	get	the	important	relationship:	a(t)	=	-x(t)	This	shows	that	in	SHM,	the	acceleration	is	proportional	to	the	displacement	and	is	always	directed	towards	the	mean	position.	The	maximum	acceleration	(acceleration	amplitude)	is	am	=	A.	When
displacement	is	maximum	positive,	acceleration	is	maximum	negative,	and	vice	versa.	When	displacement	is	zero,	acceleration	is	also	zero.	To	understand	Simple	Harmonic	Motion	(SHM)	more	deeply,	it	helps	to	explore	a	surprising	yet	beautiful	idea:	SHM	is	just	a	shadow	of	uniform	circular	motion.	This	connection	was	first	noticed	by	Galileo,	and
later	developed	into	a	powerful	mathematical	model	that	helps	us	visualize	and	understand	oscillations	in	a	new	way.	Galileo	observed	the	moons	of	Jupiter	appearing	to	move	back	and	forth	in	SHM	relative	to	the	planet,	and	it	is	now	known	that	they	move	in	nearly	circular	orbits.	What	he	saw	was	the	projection	of	their	uniform	circular	motion.	Lets
begin	with	a	simple	setup.	Imagine	a	particle	moving	in	a	uniform	circular	motion	that	means	it	is	going	around	a	circle	at	a	constant	speed.	Suppose	this	motion	happens	in	a	horizontal	circle,	like	a	stone	tied	to	a	string	and	whirled	in	a	perfect	circle.	Now,	imagine	watching	this	motion	from	the	side	from	a	point	where	you	can	only	see	the	projection
of	the	particle	on	a	wall	behind	it.	What	you	see	is	not	a	circle,	but	rather	a	to-and-fro	motion	the	particle	appears	to	move	back	and	forth	in	a	straight	line.	This	back-and-forth	projection	of	circular	motion	is	exactly	what	we	call	Simple	Harmonic	Motion.	Consider	a	particle	moving	in	a	circle	of	radius	A	with	constant	angular	velocity	.	At	any	time	t,
the	position	of	the	particle	makes	an	angle	=	t	with	the	horizontal	axis.	If	we	project	the	position	of	the	particle	onto	the	horizontal	diameter	of	the	circle,	we	get:	\(\displaystyle	x(t)	=	A	\cos(\omega	t)\)	This	is	the	exact	equation	of	displacement	for	SHM.	So,	the	horizontal	projection	of	the	circular	motion	follows	a	cosine	wave	just	like	a	mass	on	a
spring	or	a	pendulum	swinging	back	and	forth.	Lets	go	further.	In	circular	motion,	although	the	speed	is	constant,	the	direction	of	motion	changes	continuously,	which	means	the	particle	has	acceleration	(called	centripetal	acceleration)	pointing	toward	the	center	of	the	circle.	When	we	observe	the	projection	of	this	acceleration	along	the	diameter,	we
get:	\(\displaystyle	a(t)	=	-\omega^2	x(t)\)	This	is	also	the	defining	equation	for	acceleration	in	SHM.	So,	what	does	this	mean?	It	means	that	we	can	treat	SHM	as	a	one-dimensional	slice	or	shadow	of	a	uniform	circular	motion.	The	oscillating	mass	on	a	spring	moves	just	like	the	horizontal	projection	of	a	particle	moving	uniformly	around	a	circle.	This
connection	isnt	just	a	mathematical	trick	its	an	extremely	helpful	way	to	visualize	SHM.	It	helps	us	understand	phase	angles	(the	angle	in	circular	motion	becomes	the	phase	in	SHM),	the	idea	of	amplitude	(the	radius	of	the	circle),	and	the	smooth,	wave-like	nature	of	oscillatory	motion.	To	imagine	this	in	real	life,	think	of	how	the	moon	appears	to
move	across	the	sky	though	its	moving	in	a	circular	orbit,	from	our	point	of	view	on	Earth,	it	seems	to	move	back	and	forth	in	a	regular	way.	Similarly,	if	you	spin	a	ball	tied	to	a	string	in	a	circle	and	observe	its	shadow	on	a	wall,	the	shadow	will	oscillate	just	like	a	mass	in	SHM.	To	understand	the	energy	in	simple	harmonic	motion	(SHM),	lets	imagine
a	simple	system:	a	mass	mm	attached	to	a	spring	on	a	smooth	horizontal	surface.	When	you	pull	the	mass	to	one	side	and	release	it,	it	starts	oscillating	back	and	forth.	While	it	moves,	it	continuously	exchanges	energy	between	potential	energy	(stored	in	the	spring)	and	kinetic	energy	(due	to	motion).	The	total	mechanical	energy	in	SHM,	however,
always	remains	constant,	as	there	is	no	friction	or	energy	loss.	Lets	begin	with	what	we	know	about	the	motion.	The	displacement	of	the	object	in	SHM	is	given	by	the	equation:	\(\displaystyle	x(t)	=	A	\cos(\omega	t	+	\phi)\)	To	find	the	kinetic	energy,	we	first	need	the	velocity	of	the	particle.	We	take	the	derivative	of	displacement	with	respect	to	time:	\
(\displaystyle	v(t)	=	\frac{dx}{dt}	=	-A	\omega	\sin(\omega	t	+	\phi)\)	Now,	the	kinetic	energy	K	of	the	particle	is	given	by	the	formula:	\(\displaystyle	K	=	\frac{1}{2}mv^2\)	Substitute	the	expression	of	velocity	into	this:	\(\displaystyle	K	=	\frac{1}{2}m	(-A	\omega	\sin(\omega	t	+	\phi))^2	=	\frac{1}{2}m	A^2	\omega^2	\sin^2(\omega	t	+	\phi)\)
This	expression	shows	that	kinetic	energy	varies	with	time	its	not	constant.	When	the	particle	is	at	the	mean	position,	the	sine	function	becomes	1\pm	1,	and	hence	kinetic	energy	is	maximum.	When	the	particle	is	at	the	extreme	position	(maximum	displacement),	sine	becomes	zero,	and	kinetic	energy	is	zero.	Now	lets	derive	the	potential	energy
stored	in	the	spring.	In	SHM,	the	restoring	force	is	F	=	-kx,	and	the	potential	energy	U	stored	in	the	spring	when	it	is	compressed	or	stretched	by	a	displacement	xx	is	given	by:	\(\displaystyle	U	=	\frac{1}{2}kx^2\)	Substitute	\(\displaystyle	x(t)	=	A	\cos(\omega	t	+	\phi)\)	into	this	equation:	\(\displaystyle	U	=	\frac{1}{2}k	(A	\cos(\omega	t	+	\phi))^2
=	\frac{1}{2}k	A^2	\cos^2(\omega	t	+	\phi)\)	Now	recall	that	\(\displaystyle\omega^2	=	\frac{k}{m}\),	so	we	can	write	\(\displaystyle	k	=	m	\omega^2\).	Substituting	this	in:	\(\displaystyle	U	=	\frac{1}{2}	m	\omega^2	A^2	\cos^2(\omega	t	+	\phi)\)	So,	the	potential	energy	also	varies	with	time.	It	becomes	maximum	at	the	extreme	positions	(where
cosine	is	1)	and	becomes	zero	at	the	mean	position	(where	cosine	is	0).	To	find	the	total	mechanical	energy	E,	we	add	kinetic	and	potential	energy:	E	=	K	+	U	\(\displaystyle	E	=	\frac{1}{2}	m	A^2	\omega^2	\sin^2(\omega	t	+	\phi)	+	\frac{1}{2}	m	A^2	\omega^2	\cos^2(\omega	t	+	\phi)\)	Factor	out	the	common	term:	\(\displaystyle	E	=	\frac{1}{2}
m	A^2	\omega^2	(\sin^2(\omega	t	+	\phi)	+	\cos^2(\omega	t	+	\phi))\)	From	trigonometry,	we	know:	\(\displaystyle	\sin^2\theta	+	\cos^2\theta	=	1\).	So	the	total	energy	becomes:	\(\displaystyle	E	=	\frac{1}{2}	m	A^2	\omega^2\)	This	is	a	constant.	It	doesnt	depend	on	time.	It	tells	us	that	while	kinetic	and	potential	energy	in	SHM	keep	changing
from	one	to	the	other	during	motion,	their	total	sum	remains	fixed	at	every	moment.	The	energy	is	simply	shuttling	back	and	forth	like	a	perfectly	coordinated	dance	between	movement	and	position,	between	speed	and	stretch.	This	constancy	of	energy	is	what	keeps	the	system	oscillating	smoothly	and	predictably.	One	of	the	simplest	and	most
common	examples	of	a	system	that	executes	simple	harmonic	motion	(SHM)	is	a	spring-mass	system.	This	setup	not	only	helps	us	understand	SHM	clearly	but	also	forms	the	foundation	for	studying	oscillations	in	mechanical	and	physical	systems.	Imagine	a	spring	placed	on	a	smooth	horizontal	table,	and	a	block	of	mass	mm	is	attached	to	one	end	of
the	spring.	The	other	end	of	the	spring	is	fixed	to	a	wall.	Now,	if	you	pull	the	block	slightly	and	release	it,	youll	notice	something	interesting:	the	block	starts	to	move	back	and	forth	in	a	rhythmic,	repetitive	motion.	This	back-and-forth	motion	is	an	example	of	simple	harmonic	motion,	provided	the	spring	obeys	Hookes	law	and	theres	no	friction.	Lets
understand	what	happens	when	we	stretch	the	spring.	According	to	Hookes	Law,	the	force	exerted	by	a	spring	is:	F	=	-kx	Here,	x	is	the	displacement	of	the	mass	from	the	equilibrium	position,	kk	is	the	spring	constant	(which	tells	us	how	stiff	the	spring	is),	and	the	negative	sign	indicates	that	the	force	always	acts	in	the	direction	opposite	to	the
displacement	its	a	restoring	force.	This	force	is	what	pulls	the	mass	back	toward	the	mean	position	when	it	is	displaced.	And	this	is	exactly	the	condition	needed	for	SHM:	a	restoring	force	that	is	directly	proportional	to	displacement	but	acts	in	the	opposite	direction.	Now,	using	Newtons	second	law,F	=	ma,	we	can	write:	ma	=	-kx	\(\displaystyle
\Rightarrow	a	=	-\frac{k}{m}x\)	This	is	the	defining	equation	of	SHM.	It	tells	us	that	the	acceleration	is	proportional	to	the	negative	of	displacement	the	more	you	pull	the	spring,	the	stronger	the	force	pulling	it	back.	Next,	lets	look	at	how	fast	the	system	oscillates.	This	depends	on	two	things:	the	mass	mm	of	the	object	and	the	stiffness	kk	of	the
spring.	A	heavier	mass	oscillates	more	slowly,	while	a	stiffer	spring	makes	the	system	oscillate	faster.	The	angular	frequency	of	oscillation	is:	\(\displaystyle\omega	=	\sqrt{\frac{k}{m}}\)	From	angular	frequency,	we	can	calculate	the	time	period,	which	is	the	time	taken	to	complete	one	full	oscillation:	\(\displaystyle	T	=	2\pi	\sqrt{\frac{m}{k}}\)	This
formula	shows	that	the	time	period	doesnt	depend	on	how	far	you	pull	the	spring	it	only	depends	on	the	mass	and	the	spring	constant.	This	is	why	SHM	is	called	isochronous	the	time	for	each	cycle	remains	the	same.	To	make	this	more	visual,	imagine	compressing	the	spring	and	letting	it	go.	The	block	moves	quickly	toward	the	mean	position,	gains
speed,	passes	through	the	equilibrium	point	with	maximum	velocity,	then	slows	down	as	the	spring	stretches	on	the	other	side,	comes	to	a	stop	at	the	extreme	point,	and	then	reverses	direction.	This	repeating	motion	speeding	up	and	slowing	down	continues	as	long	as	theres	no	friction	to	remove	energy.	The	same	principle	applies	in	the	vertical
spring	system	too.	If	you	hang	a	mass	from	a	vertical	spring	and	displace	it	downward	slightly	and	release,	it	will	oscillate	up	and	down	around	the	new	equilibrium	position.	The	same	equations	apply,	because	gravity	only	shifts	the	equilibrium,	it	doesnt	affect	the	oscillation	itself.	One	of	the	most	familiar	examples	of	oscillatory	motion	is	a	simple
pendulum.	Its	something	weve	all	seen	whether	its	the	slow	swinging	of	a	hanging	clocks	arm	or	a	string	with	a	weight	at	the	bottom	swaying	gently.	Though	it	appears	very	simple,	the	motion	of	a	pendulum	actually	hides	beautiful	physics,	and	under	certain	conditions,	it	executes	simple	harmonic	motion	(SHM).	Lets	understand	how.	Imagine	a	small
metal	ball	called	a	bob	tied	to	a	long,	inextensible	and	massless	string	of	length	LL,	suspended	from	a	fixed	support.	When	the	bob	hangs	vertically	downward,	its	in	its	equilibrium	position.	Now,	pull	the	bob	slightly	to	one	side	and	let	it	go.	What	happens?	It	swings	to	and	fro	back	and	forth	through	the	lowest	point.	This	motion	is	periodic	and	seems
similar	to	SHM.	But	is	it	SHM?	Lets	examine	what	kind	of	force	is	acting	on	it.	When	the	bob	is	displaced	by	a	small	angle	a	from	the	vertical,	it	experiences	a	restoring	force	due	to	gravity.	The	component	of	the	gravitational	force	that	causes	the	pendulum	to	return	to	its	mean	position	is:	\(\displaystyle	F	=	-mg	\sin(\theta)\)	This	force	is	always
directed	toward	the	center	toward	equilibrium	and	tries	to	bring	the	bob	back.	However,	theres	a	catch.	SHM	requires	the	restoring	force	to	be	directly	proportional	to	displacement,	not	to	the	sine	of	an	angle.	Heres	where	the	magic	of	approximation	helps.	For	small	angles	(less	than	about	10),	we	can	use	the	mathematical	approximation:	\
(\displaystyle\sin(\theta)	\approx	\theta	\quad	\text{(in	radians)}\)	So	now	the	force	becomes:	\(\displaystyle	F	=	-mg	\theta\)	But	we	want	this	in	terms	of	linear	displacement.	The	arc	length	ss	(which	is	how	far	the	bob	has	moved	along	the	circular	path)	is	related	to	by:	\(\displaystyle	s	=	L	\theta	\Rightarrow	\theta	=	\frac{s}{L}\)	So	the	restoring
force	becomes:	\(\displaystyle	F	=	-mg	\cdot	\frac{s}{L}\)	Using	Newtons	second	law:	\(\displaystyle	ma	=	-mg	\cdot	\frac{s}{L}	\Rightarrow	a	=	-\frac{g}{L}	s\)	This	is	the	defining	equation	of	SHM:	acceleration	is	directly	proportional	to	displacement	and	directed	toward	the	mean	position.	Hence,	for	small	angular	displacements,	the	motion	of	a
simple	pendulum	is	simple	harmonic.	From	this	equation,	we	can	identify	the	angular	frequency	:	\(\displaystyle\omega^2	=	\frac{g}{L}	\Rightarrow	\omega	=	\sqrt{\frac{g}{L}}\)	And	from	that,	the	time	period	of	one	complete	oscillation	is:	\(\displaystyle	T	=	2\pi	\sqrt{\frac{L}{g}}\)	This	is	a	beautiful	result	the	time	period	of	a	simple	pendulum
depends	only	on	the	length	of	the	string	and	the	acceleration	due	to	gravity,	and	not	on	the	mass	of	the	bob	or	the	amplitude	(as	long	as	the	amplitude	is	small).	So,	two	pendulums	of	the	same	length	will	swing	with	the	same	rhythm	no	matter	what	their	mass	is.	Also	Read:	Keplers	Law	of	Planetary	Motion	Simple	harmonic	motion	(SHM)	is	a	specific
type	of	oscillation	thatoccurs	when	acceleration	is	proportional	to	displacement	from	a	fixed	point	and	in	the	opposite	directionAn	object	is	said	to	performsimple	harmonic	oscillationswhen	all	of	the	following	apply:The	oscillations	are	periodic	(repeating)There	is	a	central	equilibrium	point	known	as	the	fixed	pointThe	object's	displacement,	velocity
and	acceleration	change	continuouslyThere	is	arestoring	forcealways	directed	towards	the	fixed	pointThe	magnitude	of	the	restoring	force	is	proportional	to	the	displacementThe	restoring	force	causes	the	accelerationTherestoring	forceand	theaccelerationmust	always	be:Directed	towards	the	equilibrium	position,	and	hence,	in	theoppositedirection	to
thedisplacementDirectlyproportionalto	thedisplacementa	xWhere:a=	acceleration	(m	s2)x=	displacement	(m)Restoring	force,	acceleration	and	displacementForce,	acceleration	and	displacement	of	a	simple	pendulum	in	SHMExamples	of	simple	harmonic	motionExamples	of	oscillators	that	undergo	SHM	are:The	pendulum	of	a	clockA	child	on	a
swingThe	vibrations	of	a	bowlA	bungee	jumper	reaching	the	bottom	of	his	fallA	mass	on	a	springGuitar	strings	vibratingA	ruler	vibrating	off	the	end	of	a	tableThe	electrons	in	alternating	current	flowing	through	a	wireThe	movement	of	a	swing	bridge	when	someone	crossesA	marble	dropped	into	a	bowlExamples	of	simple	harmonic	motionA
pendulum,	bungee	jumper,	swing	bridge,	vibrations	in	a	prayer	bowl,	a	swing,	a	ball	rolling	up	and	down	the	sides	of	a	bowl	and	a	spring	are	all	examples	of	simple	harmonic	oscillations.An	example	of	not	SHMA	person	jumping	on	a	trampoline	is	not	an	example	of	simple	harmonic	motion	because:Therestoring	forceon	the	person	is	not	proportional
to	theirdisplacementfrom	the	equilibrium	position	and	always	acts	downWhen	the	person	isnot	in	contactwith	the	trampoline,	the	restoring	force	is	equal	to	their	weight,	which	is	constantThisdoes	not	change,	even	if	they	jump	higherThe	restoring	force	of	the	person	bouncing	is	equal	to	their	weight	and	always	acts	downwardsPage	2An	oscillation	is
defined	as	follows:The	repetitive	variation	with	time	t	of	the	displacement	x	of	an	object	about	the	equilibrium	position	(x	=	0)Pendulum	oscillation	on	a	displacement-time	graphA	pendulum	oscillates	between	A	and	B.	On	a	displacement-time	graph,	the	oscillating	motion	of	the	pendulum	is	represented	by	a	wave,	with	an	amplitude	equal	to
x0Equilibrium	position	(x	=	0)is	the	position	when	there	is	no	resultant	force	acting	on	an	objectDisplacement	(x)of	a	wave	is	the	distance	of	a	point	on	the	wave	from	its	equilibrium	positionIt	is	a	vector	quantity;	it	can	be	positive	or	negative	and	it	is	measured	in	metres	(m)Amplitude	(x0)	is	the	maximum	value	of	the	displacement	on	either	side	of	the
equilibrium	position	and	is	known	as	the	amplitude	of	the	oscillationAmplitude	is	measured	in	metres	(m)Wavelength	()	is	the	length	of	one	complete	oscillation	measured	from	the	same	point	on	two	consecutive	wavesWavelength	is	measured	in	metres	(m)Wavelength	and	amplitude	on	a	displacement-time	graphDiagram	of	wavelength	and	amplitude
of	a	wavePeriod	(T)	or	time	period,	is	thetime	interval	for	one	complete	repetition	and	it	is	measured	in	seconds	(s)Simple	harmonic	oscillations	have	a	constant	periodTime	period	can	be	calculated	in	terms	of	both	frequency	and	angular	frequency	by	the	equations:Where:T=	Time	period	(s)f	=	frequency	(Hz)	=	angular	frequency	(rad	s1)Time	period
on	a	displacement-time	graphDiagram	showing	the	time	period	of	a	waveFrequency	(f)	is	the	number	of	oscillations	per	second	measured	in	hertz	(Hz)Hz	have	the	SI	units	of	per	second	s1Angular	Frequency()is	the	rate	of	change	of	angular	displacement	with	respect	to	timeAngular	frequency	is	measured	in	rad	s1It	is	given	by	the	equations:Where:=
angular	frequency	(rad	s1)T=	time	period	(s)f	=	frequency	(Hz)Phase	differencePhase	is	a	useful	way	to	consider	wave	behaviourThe	phase	of	a	wave	can	be	measured	in	terms	of:Fractions	of	wavelengthDegreesRadiansOne	complete	oscillation	is:1	wavelength3602	radiansWavelength	and	amplitude	A	of	a	travelling	waveThephase	differencebetween
two	waves	is	a	measure	ofhow	much	a	point	or	a	wave	is	in	front	or	behind	anotherThis	can	be	found	from	the	relative	position	of	the	crests	or	troughs	of	two	different	waves	of	the	same	frequencyWhen	the	crests	of	each	wave,	or	the	troughs	of	each	wave	are	aligned,	the	waves	arein	phaseWhen	the	crest	of	one	wave	aligns	with	the	trough	of
another,	they	are	inantiphaseThe	diagram	below	shows	thatthe	green	wave	leadsthe	purple	wave	by	the	purple	wave	lagsbehind	the	green	wave	by	A	phase	difference	of	1/4	wavelengthTwo	waves	out	of	phasePhase	difference	can	be	described	as	in	phase	or	in	anti-phase:In	phaseis360oor	2	radiansIn	anti-phaseis180oor	radiansPage	3Exam	code:
97021	hour8	questions1a2	marks1b5	marksIdentify	the	correct	definition	by	drawing	lines	between	the	properties	of	oscillations	and	their	definition.Properties	of	OscillationsDefinition	of	PropertiesDisplacementThe	rate	of	change	of	angular	displacement	with	respect	to	timeAmplitudeThe	distance	of	an	oscillator	from	its	equilibrium	positionAngular
FrequencyThe	time	taken	for	one	complete	oscillationFrequencyThe	maximum	displacement	of	an	oscillator	from	its	equilibrium	positionTime	PeriodThe	number	of	oscillations	per	unit	time1c3	marksDefine	simple	harmonic	oscillation.1d4	marksUse	the	words	in	the	box	below	to	correctly	label	the	diagram	of	an	oscillating	pendulum	in	Fig
1.1.displacement	of	massmassaccelerationrestoring	forceequilibrium	positionFig.	1.1Did	this	page	help	you?2a2	marksThe	graph	in	Fig.	1.1	shows	that	the	acceleration	of	an	object	is	directly	proportional	to	the	negative	displacement.Fig.	1.1Label	the	two	axis	of	the	graph	on	Fig.	1.1.2b2	marksThe	graphs	in	Fig.	1.3	show	an	oscillator	starting	at	the
equilibrium	position	and	an	oscillator	starting	at	the	maximum	displacement.Fig.	1.3Identify	by	writing	next	to	the	graphs	on	Fig	1.3	the	correct	name	of	the	starting	position	of	the	oscillator.2c4	marksThe	equation	below	defines	how	the	speed	of	an	oscillator	changes	with	the	displacement	of	the	oscillator.Identify	the	variables	in	the	equation	by
stating	the	variable	and	the	quantity	it	represents	in	the	space	below.Did	this	page	help	you?3a4	marksA	pendulum	undergoes	small-angle	oscillations.State	and	explain	the	equation	that	defines	simple	harmonic	motion.3b4	marksSketch	a	graph	to	show	the	variation	of	displacement	against	time	for	one	swing	of	the	pendulum.Start	the	time	at	zero
seconds	and	mark	the	amplitude	of	the	oscillation	.3c3	marksThe	time	taken	for	10	oscillations	is	found	to	be	12.0	s.Determine	the	frequency	of	the	oscillation.3d2	marksGive	two	other	examples	of	objects	that	perform	simple	harmonic	motion.Did	this	page	help	you?1a1	markA	small	wooden	cuboid	block	of	massmfloats	in	water,	as	shown	in	Fig.
1.1.The	top	face	of	the	block	is	horizontal	and	has	an	areaA.	The	density	of	the	water	is.The	block	is	displaced	downwards	as	shown	in	Fig.	1.2	so	that	the	surface	of	the	water	is	now	higher	up	the	block.State	and	explain	the	direction	of	the	resultant	force	acting	on	the	wooden	block	in	this	position.1b2	marksThe	block	in(a)is	now	released	so	that	is
oscillates	vertically.The	resultant	forceFacting	on	the	block	is	given	bywheregis	the	gravitational	field	strength	andxis	the	vertical	displacement	of	the	block	from	the	equilibrium	position.Explain	why	the	oscillations	of	the	block	are	simple	harmonic.1c3	marksUse	the	equation	from(b)to	obtain	an	expression	for	the	angular	frequency	of	the	oscillations
of	the	block.1d4	marksThe	block	is	now	placed	in	a	liquid	with	a	lower	density.	The	block	is	displaced	and	released	so	that	it	oscillates	vertically.	The	variation	with	displacement	xof	the	accelerationaof	the	block	is	measured	for	the	first	half	of	the	oscillation,	as	shown	in	Fig.	1.3.(i)	Explain	why	the	maximum	negative	displacement	of	the	block	is	not
equal	to	its	maximum	positive	displacement.[1](ii)	The	mass	of	the	block	is	0.65	kg.Use	Fig.	1.3.	to	determine	the	decrease	in	energy	of	the	oscillation	for	the	first	half	of	the	oscillation.E=	...................................................	J	[3]Did	this	page	help	you?2a2	marksA	pendulum	consists	of	a	bob	(small	plastic	sphere)	attached	to	the	end	of	a	piece	of	wire.
The	other	end	of	the	wire	is	attached	to	a	fixed	point.	The	bob	oscillates	with	small	oscillations	about	its	equilibrium	position,	as	shown	in	Fig.	1.1.The	lengthLof	the	pendulum,	measured	from	the	fixed	point	to	the	centre	of	the	bob,	is	1.56	m.The	accelerationaof	the	bob	varies	with	its	displacementxfrom	the	equilibrium	position	as	shown	in	Fig.
1.2.State	how	Fig.	1.2	shows	that	the	motion	of	the	pendulum	is	simple	harmonic.2b2	marksUse	Fig.	1.2	from(a)to	calculate	the	angular	frequency	of	the	oscillations.=	.................................................	rad	s12c2	marksThe	angular	frequency	is	related	to	the	lengthLof	the	pendulum	bywherekis	a	constant.Use	your	answer	from(b)to	determinek.	Give	a
unit	for	your	answer.k=	...............................................	unit	................2d2	marksWhilst	the	pendulum	is	oscillating,	the	length	of	the	string	is	decreased	in	such	a	way	that	the	total	energy	of	the	oscillations	remains	constant.Suggest	and	explain	the	qualitative	effect	of	this	change	on	the	amplitude	of	the	oscillations.Did	this	page	help	you?3a2	marksAn
object	is	suspended	from	a	spring	that	is	attached	to	a	fixed	point	as	shown	in	Fig.	1.1.The	object	oscillates	vertically	with	simple	harmonic	motion	about	its	vertical	position.State	the	defining	equation	for	simple	harmonic	motion.	Identify	the	meaning	of	each	of	the	symbols	used	to	represent	Physical	quantities.3b3	marksThe	variation	with
displacement	xfrom	the	equilibrium	position	of	the	velocityv	of	the	object	is	shown	in	Fig.	1.2.Use	Fig.	1.2	to:(i)	Determine	the	amplitudex0	of	the	oscillationsx0	=	..............................................	m	[1](ii)	Determine	the	angular	frequency	of	the	oscillations.[2]3c4	marksThe	oscillations	of	the	object	are	now	heavily	damped.(i)	State	what	is	meant	by
damping.	[2](ii)	Assume	that	the	damping	does	not	change	the	angular	frequency	of	the	oscillations.On	Fig.	1.2,	sketch	the	variation	withxofv	when	the	amplitude	of	the	oscillations	is	0.03	m.[2]Did	this	page	help	you?1a4	marksA	mass	of	0.42	kg	is	attached	to	a	spring	and	the	system	is	made	to	oscillate	with	simple	harmonic	motion	(SHM)	on	a
horizontal,	frictionless	surface.	The	mass	passes	through	the	equilibrium	position200times	per	minute.The	kinetic	energy	of	the	mass	as	it	passes	through	the	equilibrium	position	is500mJ.There	are	two	points	where	the	restoring	force	acting	on	the	mass	is	at	its	maximum.Show	that	the	distance	between	these	points	is	approximately	29	cm.1b2
marksSketch	a	graph	to	show	how	the	velocity	of	the	mass	varies	with	time.	Label	the	graph	with	any	suitable	values.1c2	marksFind	the	distance	of	the	mass	from	the	equilibrium	position	when	the	speed	of	the	block	is0.8m	s11d3	marksThe	experiment	is	moved	to	planet	X.	The	gravitational	acceleration	on	planet	X	is	g.	It	is	known	that	=	2.	Another
change	is	that	three	more	identical	springs	are	placed	in	parallel	to	the	original	spring.The	period	of	a	spring	undergoing	simple	harmonic	oscillation	is	given	by:wherem	is	the	mass	of	the	object	at	the	end	of	the	spring	andk	is	the	spring	constant.Describe,	without	calculations,	how	these	changes	affect	the	frequency	with	which	the	mass
oscillates.Did	this	page	help	you?2a3	marksA	small	metal	pendulum	bob	is	suspended	at	rest	from	a	fixed	point	with	a	length	of	thread	of	negligible	mass.	Air	resistance	is	negligible.	The	pendulum	begins	to	oscillate.	Fig.	1.1	shows	the	variation	of	kinetic	energy	of	the	pendulum	bob	with	time.Fig.	1.1(i)	Label	on	the	graph	with	the	letter	X	a	point
where	the	speed	of	the	pendulum	is	half	that	of	its	initial	speed.[1](ii)	Calculate,	in	metres,	the	length	of	the	thread,	if	the	periodT	is	given	by	the	equation:wherel	is	the	pendulum	length	andg	is	the	acceleration	of	free	fall.[2]2b3	marksFig.	1.2shows	how	the	kinetic	energy	of	the	pendulum	varies	with	displacement.Fig.	1.2(i)	Sketch	on	the	diagram
above	a	graph	to	show	how	the	potential	energy	of	the	pendulum	varies	with	displacement.[1](ii)	Calculate	the	mass	of	the	pendulum	bob.[2]2c2	marksCalculate	the	magnitude	of	the	maximum	force	upon	the	pendulum.Did	this	page	help	you?Page	4PolarisationSelect	a	download	format	for	PolarisationMultiple	Choice	QuestionsScroll	for
moreDiffractionSelect	a	download	format	for	DiffractionMultiple	Choice	QuestionsScroll	for	moreConcept	of	a	Magnetic	FieldRepresenting	Magnetic	Fields	Science	Astronomy	Newtons	laws	of	motion,	three	statements	describing	the	relations	between	the	forces	acting	on	a	body	and	the	motion	of	the	body,	first	formulated	by	English	physicist	and
mathematician	Isaac	Newton,	which	are	the	foundation	of	classical	mechanics.	basketball;	Newton's	laws	of	motionWhen	a	basketball	player	shoots	a	jump	shot,	the	ball	always	follows	an	arcing	path.	The	ball	follows	this	path	because	its	motion	obeys	Isaac	Newton's	laws	of	motion.Newtons	first	law	states	that	if	a	body	is	at	rest	or	moving	at	a
constant	speed	in	a	straight	line,	it	will	remain	at	rest	or	keep	moving	in	a	straight	line	at	constant	speed	unless	it	is	acted	upon	by	a	force.	In	fact,	in	classical	Newtonian	mechanics,	there	is	no	important	distinction	between	rest	and	uniform	motion	in	a	straight	line;	they	may	be	regarded	as	the	same	state	of	motion	seen	by	different	observers,	one
moving	at	the	same	velocity	as	the	particle	and	the	other	moving	at	constant	velocity	with	respect	to	the	particle.	This	postulate	is	known	as	the	law	of	inertia.	The	law	of	inertia	was	first	formulated	by	Galileo	Galilei	for	horizontal	motion	on	Earth	and	was	later	generalized	by	Ren	Descartes.	Although	the	principle	of	inertia	is	the	starting	point	and	the
fundamental	assumption	of	classical	mechanics,	it	is	less	than	intuitively	obvious	to	the	untrained	eye.	In	Aristotelian	mechanics	and	in	ordinary	experience,	objects	that	are	not	being	pushed	tend	to	come	to	rest.	The	law	of	inertia	was	deduced	by	Galileo	from	his	experiments	with	balls	rolling	down	inclined	planes.	For	Galileo,	the	principle	of	inertia
was	fundamental	to	his	central	scientific	task:	he	had	to	explain	how	is	it	possible	that	if	Earth	is	really	spinning	on	its	axis	and	orbiting	the	Sun,	we	do	not	sense	that	motion.	The	principle	of	inertia	helps	to	provide	the	answer:	since	we	are	in	motion	together	with	Earth	and	our	natural	tendency	is	to	retain	that	motion,	Earth	appears	to	us	to	be	at
rest.	Thus,	the	principle	of	inertia,	far	from	being	a	statement	of	the	obvious,	was	once	a	central	issue	of	scientific	contention.	By	the	time	Newton	had	sorted	out	all	the	details,	it	was	possible	to	accurately	account	for	the	small	deviations	from	this	picture	caused	by	the	fact	that	the	motion	of	Earths	surface	is	not	uniform	motion	in	a	straight	line	(the
effects	of	rotational	motion	are	discussed	below).	In	the	Newtonian	formulation,	the	common	observation	that	bodies	that	are	not	pushed	tend	to	come	to	rest	is	attributed	to	the	fact	that	they	have	unbalanced	forces	acting	on	them,	such	as	friction	and	air	resistance.	
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