
	

https://pirekedapumome.maxudijuz.com/487427379600691063291597214007286485634651?bivusifokadoxadiwelejumorop=zebumoweguwesofakurukuniwakoginewidinamemesogomolisunupurarepuvakidekemotemugodirajatikusedajapirolafasavilozofodoremozebiligazapujogaxuburebuzewijekezopawulumitedamuwisefejilapabexukaxunajolowoxejimoxuxon&utm_term=avl+tree+example&buwavarapusijupopujezoxokawejixiralomaturolujezawalimatalebuvixolepezobokis=robosomatotunavodesebadunomisaremusiwavepapevilamedobezewemijomobaxubegoxakefirefapolejotovakabazodutamowuwasatilesoliwaja

Read-only	operations	of	an	AVL	tree	involve	carrying	out	the	same	actions	as	would	be	carried	out	on	an	unbalanced	binary	search	tree,	but	modifications	have	to	observe	and	restore	the	height	balance	of	the	sub-trees.	Searching	for	a	specific	key	in	an	AVL	tree	can	be	done	the	same	way	as	that	of	any	balanced	or	unbalanced	binary	search	tree.[8]: 
ch.	8 	In	order	for	search	to	work	effectively	it	has	to	employ	a	comparison	function	which	establishes	a	total	order	(or	at	least	a	total	preorder)	on	the	set	of	keys.[9]: 23 	The	number	of	comparisons	required	for	successful	search	is	limited	by	the	height	h	and	for	unsuccessful	search	is	very	close	to	h,	so	both	are	in	O(log	n).[10]: 216 	As	a	read-only
operation	the	traversal	of	an	AVL	tree	functions	the	same	way	as	on	any	other	binary	tree.	Exploring	all	n	nodes	of	the	tree	visits	each	link	exactly	twice:	one	downward	visit	to	enter	the	subtree	rooted	by	that	node,	another	visit	upward	to	leave	that	node's	subtree	after	having	explored	it.	Once	a	node	has	been	found	in	an	AVL	tree,	the	next	or
previous	node	can	be	accessed	in	amortized	constant	time.[11]: 58 	Some	instances	of	exploring	these	"nearby"	nodes	require	traversing	up	to	h	∝	log(n)	links	(particularly	when	navigating	from	the	rightmost	leaf	of	the	root's	left	subtree	to	the	root	or	from	the	root	to	the	leftmost	leaf	of	the	root's	right	subtree;	in	the	AVL	tree	of	figure	1,	navigating
from	node	P	to	the	next-to-the-right	node	Q	takes	3	steps).	Since	there	are	n−1	links	in	any	tree,	the	amortized	cost	is	2×(n−1)/n,	or	approximately	2.	When	inserting	a	node	into	an	AVL	tree,	you	initially	follow	the	same	process	as	inserting	into	a	Binary	Search	Tree.	If	the	tree	is	empty,	then	the	node	is	inserted	as	the	root	of	the	tree.	If	the	tree	is	not
empty,	then	we	go	down	the	root,	and	recursively	go	down	the	tree	searching	for	the	location	to	insert	the	new	node.	This	traversal	is	guided	by	the	comparison	function.	In	this	case,	the	node	always	replaces	a	NULL	reference	(left	or	right)	of	an	external	node	in	the	tree	i.e.,	the	node	is	either	made	a	left-child	or	a	right-child	of	the	external	node.
After	this	insertion,	if	a	tree	becomes	unbalanced,	only	ancestors	of	the	newly	inserted	node	are	unbalanced.	This	is	because	only	those	nodes	have	their	sub-trees	altered.[12]	So	it	is	necessary	to	check	each	of	the	node's	ancestors	for	consistency	with	the	invariants	of	AVL	trees:	this	is	called	"retracing".	This	is	achieved	by	considering	the	balance
factor	of	each	node.[6]: 458–481 	[11]: 108 	Since	with	a	single	insertion	the	height	of	an	AVL	subtree	cannot	increase	by	more	than	one,	the	temporary	balance	factor	of	a	node	after	an	insertion	will	be	in	the	range	[–2,+2].	For	each	node	checked,	if	the	temporary	balance	factor	remains	in	the	range	from	–1	to	+1	then	only	an	update	of	the	balance
factor	and	no	rotation	is	necessary.	However,	if	the	temporary	balance	factor	is	±2,	the	subtree	rooted	at	this	node	is	AVL	unbalanced,	and	a	rotation	is	needed.[9]: 52 	With	insertion	as	the	code	below	shows,	the	adequate	rotation	immediately	perfectly	rebalances	the	tree.	In	figure	1,	by	inserting	the	new	node	Z	as	a	child	of	node	X	the	height	of	that
subtree	Z	increases	from	0	to	1.	Invariant	of	the	retracing	loop	for	an	insertion	The	height	of	the	subtree	rooted	by	Z	has	increased	by	1.	It	is	already	in	AVL	shape.	More	information	Example	code	for	an	insert	operation	...	Example	code	for	an	insert	operation	for	(X	=	parent(Z);	X	!=	null;	X	=	parent(Z))	{	//	Loop	(possibly	up	to	the	root)	//	BF(X)	has
to	be	updated:	if	(Z	==	right_child(X))	{	//	The	right	subtree	increases	if	(BF(X)	>	0)	{	//	X	is	right-heavy	//	==>	the	temporary	BF(X)	==	+2	//	==>	rebalancing	is	required.	G	=	parent(X);	//	Save	parent	of	X	around	rotations	if	(BF(Z)	<	0)	//	Right	Left	Case	(see	figure	3)	N	=	rotate_RightLeft(X,	Z);	//	Double	rotation:	Right(Z)	then	Left(X)	else	//	Right
Right	Case	(see	figure	2)	N	=	rotate_Left(X,	Z);	//	Single	rotation	Left(X)	//	After	rotation	adapt	parent	link	}	else	{	if	(BF(X)	<	0)	{	BF(X)	=	0;	//	Z’s	height	increase	is	absorbed	at	X.	break;	//	Leave	the	loop	}	BF(X)	=	+1;	Z	=	X;	//	Height(Z)	increases	by	1	continue;	}	}	else	{	//	Z	==	left_child(X):	the	left	subtree	increases	if	(BF(X)	<	0)	{	//	X	is	left-
heavy	//	==>	the	temporary	BF(X)	==	-2	//	==>	rebalancing	is	required.	G	=	parent(X);	//	Save	parent	of	X	around	rotations	if	(BF(Z)	>	0)	//	Left	Right	Case	N	=	rotate_LeftRight(X,	Z);	//	Double	rotation:	Left(Z)	then	Right(X)	else	//	Left	Left	Case	N	=	rotate_Right(X,	Z);	//	Single	rotation	Right(X)	//	After	rotation	adapt	parent	link	}	else	{	if	(BF(X)	>
0)	{	BF(X)	=	0;	//	Z’s	height	increase	is	absorbed	at	X.	break;	//	Leave	the	loop	}	BF(X)	=	-1;	Z	=	X;	//	Height(Z)	increases	by	1	continue;	}	}	//	After	a	rotation	adapt	parent	link:	//	N	is	the	new	root	of	the	rotated	subtree	//	Height	does	not	change:	Height(N)	==	old	Height(X)	parent(N)	=	G;	if	(G	!=	null)	{	if	(X	==	left_child(G))	left_child(G)	=	N;	else
right_child(G)	=	N;	}	else	tree->root	=	N;	//	N	is	the	new	root	of	the	total	tree	break;	//	There	is	no	fall	thru,	only	break;	or	continue;	}	//	Unless	loop	is	left	via	break,	the	height	of	the	total	tree	increases	by	1.	Close	In	order	to	update	the	balance	factors	of	all	nodes,	first	observe	that	all	nodes	requiring	correction	lie	from	child	to	parent	along	the	path
of	the	inserted	leaf.	If	the	above	procedure	is	applied	to	nodes	along	this	path,	starting	from	the	leaf,	then	every	node	in	the	tree	will	again	have	a	balance	factor	of	−1,	0,	or	1.	The	retracing	can	stop	if	the	balance	factor	becomes	0	implying	that	the	height	of	that	subtree	remains	unchanged.	If	the	balance	factor	becomes	±1	then	the	height	of	the
subtree	increases	by	one	and	the	retracing	needs	to	continue.	If	the	balance	factor	temporarily	becomes	±2,	this	has	to	be	repaired	by	an	appropriate	rotation	after	which	the	subtree	has	the	same	height	as	before	(and	its	root	the	balance	factor	0).	The	time	required	is	O(log	n)	for	lookup,	plus	a	maximum	of	O(log	n)	retracing	levels	(O(1)	on	average)
on	the	way	back	to	the	root,	so	the	operation	can	be	completed	in	O(log	n)	time.[9]: 53 	The	preliminary	steps	for	deleting	a	node	are	described	in	section	Binary	search	tree#Deletion.	There,	the	effective	deletion	of	the	subject	node	or	the	replacement	node	decreases	the	height	of	the	corresponding	child	tree	either	from	1	to	0	or	from	2	to	1,	if	that
node	had	a	child.	Starting	at	this	subtree,	it	is	necessary	to	check	each	of	the	ancestors	for	consistency	with	the	invariants	of	AVL	trees.	This	is	called	"retracing".	Since	with	a	single	deletion	the	height	of	an	AVL	subtree	cannot	decrease	by	more	than	one,	the	temporary	balance	factor	of	a	node	will	be	in	the	range	from	−2	to	+2.	If	the	balance	factor
remains	in	the	range	from	−1	to	+1	it	can	be	adjusted	in	accord	with	the	AVL	rules.	If	it	becomes	±2	then	the	subtree	is	unbalanced	and	needs	to	be	rotated.	(Unlike	insertion	where	a	rotation	always	balances	the	tree,	after	delete,	there	may	be	BF(Z)	≠	0	(see	figures	2	and	3),	so	that	after	the	appropriate	single	or	double	rotation	the	height	of	the
rebalanced	subtree	decreases	by	one	meaning	that	the	tree	has	to	be	rebalanced	again	on	the	next	higher	level.)	The	various	cases	of	rotations	are	described	in	section	Rebalancing.	Invariant	of	the	retracing	loop	for	a	deletion	The	height	of	the	subtree	rooted	by	N	has	decreased	by	1.	It	is	already	in	AVL	shape.	More	information	Example	code	for	a
delete	operation	...	Example	code	for	a	delete	operation	for	(X	=	parent(N);	X	!=	null;	X	=	G)	{	//	Loop	(possibly	up	to	the	root)	G	=	parent(X);	//	Save	parent	of	X	around	rotations	//	BF(X)	has	not	yet	been	updated!	if	(N	==	left_child(X))	{	//	the	left	subtree	decreases	if	(BF(X)	>	0)	{	//	X	is	right-heavy	//	==>	the	temporary	BF(X)	==	+2	//	==>
rebalancing	is	required.	Z	=	right_child(X);	//	Sibling	of	N	(higher	by	2)	b	=	BF(Z);	if	(b	<	0)	//	Right	Left	Case	(see	figure	3)	N	=	rotate_RightLeft(X,	Z);	//	Double	rotation:	Right(Z)	then	Left(X)	else	//	Right	Right	Case	(see	figure	2)	N	=	rotate_Left(X,	Z);	//	Single	rotation	Left(X)	//	After	rotation	adapt	parent	link	}	else	{	if	(BF(X)	==	0)	{	BF(X)	=	+1;	//
N’s	height	decrease	is	absorbed	at	X.	break;	//	Leave	the	loop	}	N	=	X;	BF(N)	=	0;	//	Height(N)	decreases	by	1	continue;	}	}	else	{	//	(N	==	right_child(X)):	The	right	subtree	decreases	if	(BF(X)	<	0)	{	//	X	is	left-heavy	//	==>	the	temporary	BF(X)	==	-2	//	==>	rebalancing	is	required.	Z	=	left_child(X);	//	Sibling	of	N	(higher	by	2)	b	=	BF(Z);	if	(b	>	0)	//
Left	Right	Case	N	=	rotate_LeftRight(X,	Z);	//	Double	rotation:	Left(Z)	then	Right(X)	else	//	Left	Left	Case	N	=	rotate_Right(X,	Z);	//	Single	rotation	Right(X)	//	After	rotation	adapt	parent	link	}	else	{	if	(BF(X)	==	0)	{	BF(X)	=	-1;	//	N’s	height	decrease	is	absorbed	at	X.	break;	//	Leave	the	loop	}	N	=	X;	BF(N)	=	0;	//	Height(N)	decreases	by	1	continue;	}
}	//	After	a	rotation	adapt	parent	link:	//	N	is	the	new	root	of	the	rotated	subtree	parent(N)	=	G;	if	(G	!=	null)	{	if	(X	==	left_child(G))	left_child(G)	=	N;	else	right_child(G)	=	N;	}	else	tree->root	=	N;	//	N	is	the	new	root	of	the	total	tree	if	(b	==	0)	break;	//	Height	does	not	change:	Leave	the	loop	//	Height(N)	decreases	by	1	(==	old	Height(X)-1)	}	//	If
(b	!=	0)	the	height	of	the	total	tree	decreases	by	1.	Close	The	retracing	can	stop	if	the	balance	factor	becomes	±1	(it	must	have	been	0)	meaning	that	the	height	of	that	subtree	remains	unchanged.	If	the	balance	factor	becomes	0	(it	must	have	been	±1)	then	the	height	of	the	subtree	decreases	by	one	and	the	retracing	needs	to	continue.	If	the	balance
factor	temporarily	becomes	±2,	this	has	to	be	repaired	by	an	appropriate	rotation.	It	depends	on	the	balance	factor	of	the	sibling	Z	(the	higher	child	tree	in	figure	2)	whether	the	height	of	the	subtree	decreases	by	one	–and	the	retracing	needs	to	continue–	or	does	not	change	(if	Z	has	the	balance	factor	0)	and	the	whole	tree	is	in	AVL-shape.	The	time
required	is	O(log	n)	for	lookup,	plus	a	maximum	of	O(log	n)	retracing	levels	(O(1)	on	average)	on	the	way	back	to	the	root,	so	the	operation	can	be	completed	in	O(log	n)	time.	In	addition	to	the	single-element	insert,	delete	and	lookup	operations,	several	set	operations	have	been	defined	on	AVL	trees:	union,	intersection	and	set	difference.	Then	fast
bulk	operations	on	insertions	or	deletions	can	be	implemented	based	on	these	set	functions.	These	set	operations	rely	on	two	helper	operations,	Split	and	Join.	With	the	new	operations,	the	implementation	of	AVL	trees	can	be	more	efficient	and	highly-parallelizable.[13]	The	function	Join	on	two	AVL	trees	t1	and	t2	and	a	key	k	will	return	a	tree
containing	all	elements	in	t1,	t2	as	well	as	k.	It	requires	k	to	be	greater	than	all	keys	in	t1	and	smaller	than	all	keys	in	t2.	If	the	two	trees	differ	by	height	at	most	one,	Join	simply	create	a	new	node	with	left	subtree	t1,	root	k	and	right	subtree	t2.	Otherwise,	suppose	that	t1	is	higher	than	t2	for	more	than	one	(the	other	case	is	symmetric).	Join	follows
the	right	spine	of	t1	until	a	node	c	which	is	balanced	with	t2.	At	this	point	a	new	node	with	left	child	c,	root	k	and	right	child	t2	is	created	to	replace	c.	The	new	node	satisfies	the	AVL	invariant,	and	its	height	is	one	greater	than	c.	The	increase	in	height	can	increase	the	height	of	its	ancestors,	possibly	invalidating	the	AVL	invariant	of	those	nodes.	This
can	be	fixed	either	with	a	double	rotation	if	invalid	at	the	parent	or	a	single	left	rotation	if	invalid	higher	in	the	tree,	in	both	cases	restoring	the	height	for	any	further	ancestor	nodes.	Join	will	therefore	require	at	most	two	rotations.	The	cost	of	this	function	is	the	difference	of	the	heights	between	the	two	input	trees.	More	information	Pseudocode
implementation	for	the	Join	algorithm	...	Pseudocode	implementation	for	the	Join	algorithm	function	JoinRightAVL(TL,	k,	TR)	(l,	k',	c)	=	expose(TL)	if	(Height(c)	node.data:	node.right	=	delete(node.right,	data)	else:	if	node.left	is	None:	temp	=	node.right	node	=	None	return	temp	elif	node.right	is	None:	temp	=	node.left	node	=	None	return	temp	temp
=	minValueNode(node.right)	node.data	=	temp.data	node.right	=	delete(node.right,	temp.data)	if	node	is	None:	return	node	#	Update	the	balance	factor	and	balance	the	tree	node.height	=	1	+	max(getHeight(node.left),	getHeight(node.right))	balance	=	getBalance(node)	#	Balancing	the	tree	#	Left	Left	if	balance	>	1	and	getBalance(node.left)	>=	0:
return	rightRotate(node)	#	Left	Right	if	balance	>	1	and	getBalance(node.left)	<	0:	node.left	=	leftRotate(node.left)	return	rightRotate(node)	#	Right	Right	if	balance	<	-1	and	getBalance(node.right)	0:	node.right	=	rightRotate(node.right)	return	leftRotate(node)	return	node	Run	Example	»	Time	Complexity	for	AVL	Trees	Take	a	look	at	the
unbalanced	Binary	Search	Tree	below.	Searching	for	"M"	means	that	all	nodes	except	1	must	be	compared.	But	searching	for	"M"	in	the	AVL	Tree	below	only	requires	us	to	visit	4	nodes.	So	in	worst	case,	algorithms	like	search,	insert,	and	delete	must	run	through	the	whole	height	of	the	tree.	This	means	that	keeping	the	height	(\(h	\))	of	the	tree	low,
like	we	do	using	AVL	Trees,	gives	us	a	lower	runtime.	B	G	E	K	F	P	I	M	Binary	Search	Tree(unbalanced)	G	E	K	B	F	I	P	M	AVL	Tree(self-balancing)	See	the	comparison	of	the	time	complexities	between	Binary	Search	Trees	and	AVL	Trees	below,	and	how	the	time	complexities	relate	to	the	height	(\(h\))	of	the	tree,	and	the	number	of	nodes	(\(n\))	in	the
tree.	The	BST	is	not	self-balancing.	This	means	that	a	BST	can	be	very	unbalanced,	almost	like	a	long	chain,	where	the	height	is	nearly	the	same	as	the	number	of	nodes.	This	makes	operations	like	searching,	deleting	and	inserting	nodes	slow,	with	time	complexity	\(O(h)	=	O(n)\).	The	AVL	Tree	however	is	self-balancing.	That	means	that	the	height	of
the	tree	is	kept	to	a	minimum	so	that	operations	like	searching,	deleting	and	inserting	nodes	are	much	faster,	with	time	complexity	\(O(h)	=	O(\log	n)\).	\(O(\log	n)\)	Explained	The	fact	that	the	time	complexity	is	\(O(h)	=	O(\log	n)\)	for	search,	insert,	and	delete	on	an	AVL	Tree	with	height	\(h\)	and	nodes	\(n\)	can	be	explained	like	this:	Imagine	a
perfect	Binary	Tree	where	all	nodes	have	two	child	nodes	except	on	the	lowest	level,	like	the	AVL	Tree	below.	H	D	B	F	E	G	A	C	L	J	N	M	O	I	K	The	number	of	nodes	on	each	level	in	such	an	AVL	Tree	are:	\[1,	2,	4,	8,	16,	32,	..\]	Which	is	the	same	as:	\[2^0,	2^1,	2^2,	2^3,	2^4,	2^5,	..\]	To	get	the	number	of	nodes	\(n\)	in	a	perfect	Binary	Tree	with	height
\(h=3\),	we	can	add	the	number	of	nodes	on	each	level	together:	\[n_3=2^0	+	2^1	+	2^2	+	2^3	=	15\]	Which	is	actually	the	same	as:	\[n_3=2^4	-	1	=	15\]	And	this	is	actually	the	case	for	larger	trees	as	well!	If	we	want	to	get	the	number	of	nodes	\(n	\)	in	a	tree	with	height	\(h=5	\)	for	example,	we	find	the	number	of	nodes	like	this:	\[n_5=2^6	-	1	=
63\]	So	in	general,	the	relationship	between	the	height	\(h	\)	of	a	perfect	Binary	Tree	and	the	number	of	nodes	in	it	\(n	\),	can	be	expressed	like	this:	\[n_h	=	2^{h+1}	-	1\]	Note:	The	formula	above	can	also	be	found	by	calculating	the	sum	of	the	geometric	series	\(2^0	+	2^1	+	2^2+	2^3	+	...	+	2^n	\)	We	know	that	the	time	complexity	for	searching,
deleting,	or	inserting	a	node	in	an	AVL	tree	is	\(O(h)	\),	but	we	want	to	argue	that	the	time	complexity	is	actually	\(O(\log(n))	\),	so	we	need	to	find	the	height	\(h\)	described	by	the	number	of	nodes	\(n\):	\[\begin{equation}	\begin{aligned}	n	&	=	2^{h+1}-1	\\	n+1	&	=	2^{h+1}	\\	\log_2(n+1)	&	=	\log_2(2^{h+1})	\\	h	&	=	\log_2(n+1)	-	1	\\	\\	O(h)	&	=
O(\log{n})	\end{aligned}	\end{equation}	\]	How	the	last	line	above	is	derived	might	not	be	obvious,	but	for	a	Binary	Tree	with	a	lot	of	nodes	(big	\(n\)),	the	"+1"	and	"-1"	terms	are	not	important	when	we	consider	time	complexity.	For	more	details	on	how	to	calculate	the	time	complexity	using	Big	O	notation,	see	this	page.	The	math	above	shows	that
the	time	complexity	for	search,	delete,	and	insert	operations	on	an	AVL	Tree	\(O(h)	\),	can	actually	be	expressed	as	\(O(\log{n})	\),	which	is	fast,	a	lot	faster	than	the	time	complexity	for	BSTs	which	is	\(O(n)	\).	DSA	Exercises	AVL	tree	is	a	self-balancing	binary	search	tree	in	which	each	node	maintains	extra	information	called	a	balance	factor	whose
value	is	either	-1,	0	or	+1.AVL	tree	got	its	name	after	its	inventor	Georgy	Adelson-Velsky	and	Landis.Balance	factor	of	a	node	in	an	AVL	tree	is	the	difference	between	the	height	of	the	left	subtree	and	that	of	the	right	subtree	of	that	node.Balance	Factor	=	(Height	of	Left	Subtree	-	Height	of	Right	Subtree)	or	(Height	of	Right	Subtree	-	Height	of	Left
Subtree)The	self	balancing	property	of	an	avl	tree	is	maintained	by	the	balance	factor.	The	value	of	balance	factor	should	always	be	-1,	0	or	+1.In	rotation	operation,	the	positions	of	the	nodes	of	a	subtree	are	interchanged.In	left-rotation,	the	arrangement	of	the	nodes	on	the	right	is	transformed	into	the	arrangements	on	the	left	node.In	right-rotation,
the	arrangement	of	the	nodes	on	the	left	is	transformed	into	the	arrangements	on	the	right	node.In	left-right	rotation,	the	arrangements	are	first	shifted	to	the	left	and	then	to	the	right.In	right-left	rotation,	the	arrangements	are	first	shifted	to	the	right	and	then	to	the	left.A	newNode	is	always	inserted	as	a	leaf	node	with	balance	factor	equal	to	0.A
node	is	always	deleted	as	a	leaf	node.	After	deleting	a	node,	the	balance	factors	of	the	nodes	get	changed.	In	order	to	rebalance	the	balance	factor,	suitable	rotations	are	performed.	#	AVL	tree	implementation	in	Python	import	sys	#	Create	a	tree	node	class	TreeNode(object):	def	__init__(self,	key):	self.key	=	key	self.left	=	None	self.right	=	None
self.height	=	1	class	AVLTree(object):	#	Function	to	insert	a	node	def	insert_node(self,	root,	key):	#	Find	the	correct	location	and	insert	the	node	if	not	root:	return	TreeNode(key)	elif	key	<	root.key:	root.left	=	self.insert_node(root.left,	key)	else:	root.right	=	self.insert_node(root.right,	key)	root.height	=	1	+	max(self.getHeight(root.left),
self.getHeight(root.right))	#	Update	the	balance	factor	and	balance	the	tree	balanceFactor	=	self.getBalance(root)	if	balanceFactor	>	1:	if	key	<	root.left.key:	return	self.rightRotate(root)	else:	root.left	=	self.leftRotate(root.left)	return	self.rightRotate(root)	if	balanceFactor	<	-1:	if	key	>	root.right.key:	return	self.leftRotate(root)	else:	root.right	=
self.rightRotate(root.right)	return	self.leftRotate(root)	return	root	#	Function	to	delete	a	node	def	delete_node(self,	root,	key):	#	Find	the	node	to	be	deleted	and	remove	it	if	not	root:	return	root	elif	key	<	root.key:	root.left	=	self.delete_node(root.left,	key)	elif	key	>	root.key:	root.right	=	self.delete_node(root.right,	key)	else:	if	root.left	is	None:	temp
=	root.right	root	=	None	return	temp	elif	root.right	is	None:	temp	=	root.left	root	=	None	return	temp	temp	=	self.getMinValueNode(root.right)	root.key	=	temp.key	root.right	=	self.delete_node(root.right,	temp.key)	if	root	is	None:	return	root	#	Update	the	balance	factor	of	nodes	root.height	=	1	+	max(self.getHeight(root.left),
self.getHeight(root.right))	balanceFactor	=	self.getBalance(root)	#	Balance	the	tree	if	balanceFactor	>	1:	if	self.getBalance(root.left)	>=	0:	return	self.rightRotate(root)	else:	root.left	=	self.leftRotate(root.left)	return	self.rightRotate(root)	if	balanceFactor	<	-1:	if	self.getBalance(root.right)	b)	?	a	:	b;	}	Node	rightRotate(Node	y)	{	Node	x	=	y.left;	Node
T2	=	x.right;	x.right	=	y;	y.left	=	T2;	y.height	=	max(height(y.left),	height(y.right))	+	1;	x.height	=	max(height(x.left),	height(x.right))	+	1;	return	x;	}	Node	leftRotate(Node	x)	{	Node	y	=	x.right;	Node	T2	=	y.left;	y.left	=	x;	x.right	=	T2;	x.height	=	max(height(x.left),	height(x.right))	+	1;	y.height	=	max(height(y.left),	height(y.right))	+	1;	return	y;	}	//
Get	balance	factor	of	a	node	int	getBalanceFactor(Node	N)	{	if	(N	==	null)	return	0;	return	height(N.left)	-	height(N.right);	}	//	Insert	a	node	Node	insertNode(Node	node,	int	item)	{	//	Find	the	position	and	insert	the	node	if	(node	==	null)	return	(new	Node(item));	if	(item	<	node.item)	node.left	=	insertNode(node.left,	item);	else	if	(item	>	node.item)
node.right	=	insertNode(node.right,	item);	else	return	node;	//	Update	the	balance	factor	of	each	node	//	And,	balance	the	tree	node.height	=	1	+	max(height(node.left),	height(node.right));	int	balanceFactor	=	getBalanceFactor(node);	if	(balanceFactor	>	1)	{	if	(item	<	node.left.item)	{	return	rightRotate(node);	}	else	if	(item	>	node.left.item)	{
node.left	=	leftRotate(node.left);	return	rightRotate(node);	}	}	if	(balanceFactor	<	-1)	{	if	(item	>	node.right.item)	{	return	leftRotate(node);	}	else	if	(item	<	node.right.item)	{	node.right	=	rightRotate(node.right);	return	leftRotate(node);	}	}	return	node;	}	Node	nodeWithMimumValue(Node	node)	{	Node	current	=	node;	while	(current.left	!=	null)
current	=	current.left;	return	current;	}	//	Delete	a	node	Node	deleteNode(Node	root,	int	item)	{	//	Find	the	node	to	be	deleted	and	remove	it	if	(root	==	null)	return	root;	if	(item	<	root.item)	root.left	=	deleteNode(root.left,	item);	else	if	(item	>	root.item)	root.right	=	deleteNode(root.right,	item);	else	{	if	((root.left	==	null)	||	(root.right	==	null))	{
Node	temp	=	null;	if	(temp	==	root.left)	temp	=	root.right;	else	temp	=	root.left;	if	(temp	==	null)	{	temp	=	root;	root	=	null;	}	else	root	=	temp;	}	else	{	Node	temp	=	nodeWithMimumValue(root.right);	root.item	=	temp.item;	root.right	=	deleteNode(root.right,	temp.item);	}	}	if	(root	==	null)	return	root;	//	Update	the	balance	factor	of	each	node
and	balance	the	tree	root.height	=	max(height(root.left),	height(root.right))	+	1;	int	balanceFactor	=	getBalanceFactor(root);	if	(balanceFactor	>	1)	{	if	(getBalanceFactor(root.left)	>=	0)	{	return	rightRotate(root);	}	else	{	root.left	=	leftRotate(root.left);	return	rightRotate(root);	}	}	if	(balanceFactor	<	-1)	{	if	(getBalanceFactor(root.right)	height;	}
int	max(int	a,	int	b)	{	return	(a	>	b)	?	a	:	b;	}	//	Create	a	node	struct	Node	*newNode(int	key)	{	struct	Node	*node	=	(struct	Node	*)	malloc(sizeof(struct	Node));	node->key	=	key;	node->left	=	NULL;	node->right	=	NULL;	node->height	=	1;	return	(node);	}	//	Right	rotate	struct	Node	*rightRotate(struct	Node	*y)	{	struct	Node	*x	=	y->left;	struct
Node	*T2	=	x->right;	x->right	=	y;	y->left	=	T2;	y->height	=	max(height(y->left),	height(y->right))	+	1;	x->height	=	max(height(x->left),	height(x->right))	+	1;	return	x;	}	//	Left	rotate	struct	Node	*leftRotate(struct	Node	*x)	{	struct	Node	*y	=	x->right;	struct	Node	*T2	=	y->left;	y->left	=	x;	x->right	=	T2;	x->height	=	max(height(x->left),	height(x-
>right))	+	1;	y->height	=	max(height(y->left),	height(y->right))	+	1;	return	y;	}	//	Get	the	balance	factor	int	getBalance(struct	Node	*N)	{	if	(N	==	NULL)	return	0;	return	height(N->left)	-	height(N->right);	}	//	Insert	node	struct	Node	*insertNode(struct	Node	*node,	int	key)	{	//	Find	the	correct	position	to	insertNode	the	node	and	insertNode	it	if
(node	==	NULL)	return	(newNode(key));	if	(key	<	node->key)	node->left	=	insertNode(node->left,	key);	else	if	(key	>	node->key)	node->right	=	insertNode(node->right,	key);	else	return	node;	//	Update	the	balance	factor	of	each	node	and	//	Balance	the	tree	node->height	=	1	+	max(height(node->left),	height(node->right));	int	balance	=
getBalance(node);	if	(balance	>	1	&&	key	<	node->left->key)	return	rightRotate(node);	if	(balance	<	-1	&&	key	>	node->right->key)	return	leftRotate(node);	if	(balance	>	1	&&	key	>	node->left->key)	{	node->left	=	leftRotate(node->left);	return	rightRotate(node);	}	if	(balance	<	-1	&&	key	<	node->right->key)	{	node->right	=	rightRotate(node-
>right);	return	leftRotate(node);	}	return	node;	}	struct	Node	*minValueNode(struct	Node	*node)	{	struct	Node	*current	=	node;	while	(current->left	!=	NULL)	current	=	current->left;	return	current;	}	//	Delete	a	nodes	struct	Node	*deleteNode(struct	Node	*root,	int	key)	{	//	Find	the	node	and	delete	it	if	(root	==	NULL)	return	root;	if	(key	<	root-
>key)	root->left	=	deleteNode(root->left,	key);	else	if	(key	>	root->key)	root->right	=	deleteNode(root->right,	key);	else	{	if	((root->left	==	NULL)	||	(root->right	==	NULL))	{	struct	Node	*temp	=	root->left	?	root->left	:	root->right;	if	(temp	==	NULL)	{	temp	=	root;	root	=	NULL;	}	else	*root	=	*temp;	free(temp);	}	else	{	struct	Node	*temp	=
minValueNode(root->right);	root->key	=	temp->key;	root->right	=	deleteNode(root->right,	temp->key);	}	}	if	(root	==	NULL)	return	root;	//	Update	the	balance	factor	of	each	node	and	//	balance	the	tree	root->height	=	1	+	max(height(root->left),	height(root->right));	int	balance	=	getBalance(root);	if	(balance	>	1	&&	getBalance(root->left)	>=	0)
return	rightRotate(root);	if	(balance	>	1	&&	getBalance(root->left)	<	0)	{	root->left	=	leftRotate(root->left);	return	rightRotate(root);	}	if	(balance	<	-1	&&	getBalance(root->right)	right)	>	0)	{	root->right	=	rightRotate(root->right);	return	leftRotate(root);	}	return	root;	}	//	Print	the	tree	void	printPreOrder(struct	Node	*root)	{	if	(root	!=	NULL)	{
printf("%d	",	root->key);	printPreOrder(root->left);	printPreOrder(root->right);	}	}	int	main()	{	struct	Node	*root	=	NULL;	root	=	insertNode(root,	2);	root	=	insertNode(root,	1);	root	=	insertNode(root,	7);	root	=	insertNode(root,	4);	root	=	insertNode(root,	5);	root	=	insertNode(root,	3);	root	=	insertNode(root,	8);	printPreOrder(root);	root	=
deleteNode(root,	3);	printf("After	deletion:	");	printPreOrder(root);	return	0;	}	//	AVL	tree	implementation	in	C++	#include	using	namespace	std;	class	Node	{	public:	int	key;	Node	*left;	Node	*right;	int	height;	};	int	max(int	a,	int	b);	//	Calculate	height	int	height(Node	*N)	{	if	(N	==	NULL)	return	0;	return	N->height;	}	int	max(int	a,	int	b)	{	return	(a
>	b)	?	a	:	b;	}	//	New	node	creation	Node	*newNode(int	key)	{	Node	*node	=	new	Node();	node->key	=	key;	node->left	=	NULL;	node->right	=	NULL;	node->height	=	1;	return	(node);	}	//	Rotate	right	Node	*rightRotate(Node	*y)	{	Node	*x	=	y->left;	Node	*T2	=	x->right;	x->right	=	y;	y->left	=	T2;	y->height	=	max(height(y->left),	height(y->right))	+
1;	x->height	=	max(height(x->left),	height(x->right))	+	1;	return	x;	}	//	Rotate	left	Node	*leftRotate(Node	*x)	{	Node	*y	=	x->right;	Node	*T2	=	y->left;	y->left	=	x;	x->right	=	T2;	x->height	=	max(height(x->left),	height(x->right))	+	1;	y->height	=	max(height(y->left),	height(y->right))	+	1;	return	y;	}	//	Get	the	balance	factor	of	each	node	int
getBalanceFactor(Node	*N)	{	if	(N	==	NULL)	return	0;	return	height(N->left)	-	height(N->right);	}	//	Insert	a	node	Node	*insertNode(Node	*node,	int	key)	{	//	Find	the	correct	postion	and	insert	the	node	if	(node	==	NULL)	return	(newNode(key));	if	(key	<	node->key)	node->left	=	insertNode(node->left,	key);	else	if	(key	>	node->key)	node->right	=
insertNode(node->right,	key);	else	return	node;	//	Update	the	balance	factor	of	each	node	and	//	balance	the	tree	node->height	=	1	+	max(height(node->left),	height(node->right));	int	balanceFactor	=	getBalanceFactor(node);	if	(balanceFactor	>	1)	{	if	(key	<	node->left->key)	{	return	rightRotate(node);	}	else	if	(key	>	node->left->key)	{	node->left
=	leftRotate(node->left);	return	rightRotate(node);	}	}	if	(balanceFactor	<	-1)	{	if	(key	>	node->right->key)	{	return	leftRotate(node);	}	else	if	(key	<	node->right->key)	{	node->right	=	rightRotate(node->right);	return	leftRotate(node);	}	}	return	node;	}	//	Node	with	minimum	value	Node	*nodeWithMimumValue(Node	*node)	{	Node	*current	=
node;	while	(current->left	!=	NULL)	current	=	current->left;	return	current;	}	//	Delete	a	node	Node	*deleteNode(Node	*root,	int	key)	{	//	Find	the	node	and	delete	it	if	(root	==	NULL)	return	root;	if	(key	<	root->key)	root->left	=	deleteNode(root->left,	key);	else	if	(key	>	root->key)	root->right	=	deleteNode(root->right,	key);	else	{	if	((root->left	==
NULL)	||	(root->right	==	NULL))	{	Node	*temp	=	root->left	?	root->left	:	root->right;	if	(temp	==	NULL)	{	temp	=	root;	root	=	NULL;	}	else	*root	=	*temp;	free(temp);	}	else	{	Node	*temp	=	nodeWithMimumValue(root->right);	root->key	=	temp->key;	root->right	=	deleteNode(root->right,	temp->key);	}	}	if	(root	==	NULL)	return	root;	//	Update
the	balance	factor	of	each	node	and	//	balance	the	tree	root->height	=	1	+	max(height(root->left),	height(root->right));	int	balanceFactor	=	getBalanceFactor(root);	if	(balanceFactor	>	1)	{	if	(getBalanceFactor(root->left)	>=	0)	{	return	rightRotate(root);	}	else	{	root->left	=	leftRotate(root->left);	return	rightRotate(root);	}	}	if	(balanceFactor	<	-1)	{
if	(getBalanceFactor(root->right)	right	=	rightRotate(root->right);	return	leftRotate(root);	}	}	return	root;	}	//	Print	the	tree	void	printTree(Node	*root,	string	indent,	bool	last)	{	if	(root	!=	nullptr)	{	cout

